Какие растения были первыми на Земле. Выход растений на сушу и происхождение наземной растительности

Вся электронная библиотека      Поиск по сайту

 

ПРОИСХОЖДЕНИЕ РАСТЕНИЙ

 

Выход растений на сушу и происхождение наземной растительности

 

 

первые растения на земле

 

Смотрите также:

 

Ботаника

 

Палеоботаника

 

Палеофлористика

 

Палеонтология

 

Палеогеография

 

Биология

 

Эволюция биосферы

 

Происхождение жизни

 

Кембрийский взрыв

 

Исчезнувший мир

 

Необычные растения

 

Тимирязев – Жизнь растения

 

Жизнь зелёного растения

 

Дендрология

 

Лекарственные растения

 

Целебные овощи

 

Растения целители

 

Лекарственные растения леса

 

Необычные деревья

 

Геоботаника

 

Мхи

 

Водные растения

 

Общая биология

 

Лишайники

 

Мейен - Из истории растительных династий

 

Защита растений от вредителей

 

Удобрения для растений

 

Биографии учёных ботаников и биологов

 

Микробиология

 

Лечебные свойства берёзы

 

Пособие по биологии

В истории развития растительного мира одним из важнейших моментов является возникновение сухопутной флоры. В то время как бактерии и водоросли живут или в водоемах, или, если они обитают в почве, на сырых склонах или на голой земле, в очень тонком слое воды, достаточном для свободного их передвижения, так как сами они очень малы, высшие растения - мхи. папоротникообразные, голосеменные и цветковые, образующие ныне главную массу земной растительности,- приводят в соприкосновение с водой только свои корни, корневые волоски и ризоиды, все же остальные их органы находятся в сухой атмосфере и испаряют воду всей поверхностью.

 

Если предположить, что родоначальниками растений суши были водоросли, то трудно понять, каким образом эти легко гибнущие на воздухе организмы могли приспособиться к резкой потере воды и ее возмещению.

 

Познакомимся вкратце с теорией Бауера, взявшегося выяснить этот трудный вопрос. Основой всякого размножения является деление клеточного ядра, влекущее за собой и деление клетки. Если организм одноклеточный, то после деления клетки получается два организма. Если организм сложный, то в результате деления получается рост ткани, а рост ткани влечет за собой и рост органа, в состав которого входит данная ткань. Само собой разумеется, что каждая клетка при делении дает себе подобную.

 

Обратим теперь внимание на строение ядра из нитей особого ядерного вещества, или хроматина. В период деления хроматин ядра распределяется между определенным числом отрезков, называемых хромосомами. Согласно данным науки о наследственности, каждая хромосома имеет особое значение как носитель определенных наследственных свойств организма. При передаче этих свойств от одного поколения другому, передача совершается именно через хромосомы ядра. Если одна из хромосом погибнет, то и свойства, носителем которых она является, не передадутся по наследству. Так вот по отношению к хромосомам ядра одного и того же организма неодинаковы.

 

Как правило можно принять, что число хромосом у каждого обособленного организма свое, постоянное. Так, капуста имеет в своих клетках 18 хромосом, рапс 20, у табака и махорки их 24, у липы 41. у осины 8, у одних сортов хлопка 26, у других 52, у кукурузы 20, у пшеницы 42, у ржи 14 и так далее. При делении ядра, и стадии экваториальной пластинки, хромосомы делятся каждая продольно на две, после чего начинают расходиться к полюсам старого ядра, образуя дочерние ядра. Поэтому-то в каждом дочернем ядре будет то же число хромосом, что было в материнском ядре, а самое деление называется уравнительным или эквационным.

 

Однако после неопределенно большого числа эквационных делений клетки начинают делиться иначе. Именно, перед образованием ядерного веретена хромосомы попарно сливаются, и число их уменьшается вдвое. В стадии ядерной пластинки они снова делятся продольно и расходятся, образуя два дочерних ядра, но так как слияние уменьшило их число вдвое, то и дочерние ядра будут обладать лишь половинным числом хромосом. Полное число хромосом называется диплоидным, или двойным, а половинное - гаплоидным, или простым. Из гаплоидной клетки не может развиться такой же организм, как из диплоидной, а будет развиваться организм более слабый, в котором число хромосом все время будет поддерживаться эквационным делением все в том же гаплоидном числе. Только слияние двух ядер в процессе оплодотворения удваивает число хромосом, и возникающий в результате молодой организм снова становится диплоидным.

 

Диплоидный организм размножается обычно почкованием. Если почки одноклеточные, то они называются спорами, если состоят из однородной ткани, то таллидиями, если из органов, каковы стебель и листья, то просто почками. Гаплоид может размножаться подобно диплоиду, оставаясь при этом подобным себе самому, но может и дать так называемые гаметы, т. е. клетки, не способные к самостоятельному развитию, но способные к слиянию друг с другом, после чего число хромосом удваивается и получается так называемая зигота, т. е. двойная клетка, первая клетка следующего поколения. У многих растений, как, например, у мхов и папоротников, у многих водорослей поколение диплоидных клеток неизбежно сменяется поколением гаплоидных. У мхов сам мох гаплоидный, диплоидным же является развивающийся на нем слорогон, состоящий из пяти ножек, апофиза и коробочки; у папоротников сам папоротник, приносящий во множестве споры, является диплоидным, а вырастающие из спор маленькие заростки гаплоидны.

 

Как правило можно вывести из этих и многих Других примеров, что диплоид приносит после наступления в некоторых его клетках редукционного деления споры, а из спор вырастают гаплоидные организмы, заканчивающие свою жизнь развитием гамет. Гаметы сливаются, удваивая это число хромосом и образуя зиготу, из которой вырастает диплоидный организм. Два типа размножения: почкование и слияние гамет соответствуют как бы двум различным по своей внешности и свойствам организмам, следующим в обязательном порядке один за другим. Это явление носит в науке наименование смены поколений, или смены спорофита гаметофитом.

 

Поразительна смена гаметофита спорофитом у морской водоросли ламинарии. Несмотря на широкое географическое распространение, крупные размеры и большое промысловое значение этой водоросли, вплоть до Соважо (1915) и Килина (1916), ботаники считали ламинарию, или морскую капусту, за организм, не имеющий полового размножения, так как известны были только её подвижные споры, гаметы же никогда не наблюдались. Оказалось, однако, и притом совершенно неожиданно, что споры ламинарии прикрепляются к камням и разрастаются в маленькие растеньица, которые после продолжительного периода развития дают: одни - яйцевые клеточки, другие - подвижные сперматозоиды. Оплодотворенная яйцеклетка разрастается в крупное растение с дифференцированными тканями, приносящее затем периодически массу спор.

 

Для спорофита-диплоида ламинарии характерны быстрый рост, мощность развития и физиологическое расчленение тканей тела на покровные, ассимиляционные, проводящие, механические и выделительные; для гаметофита гаплоида (20 хромосом) - малый рост, медленное развитие, простота строения.

 

За исключением мхов у всех растений, у которых ясно выражена смена поколений, мы находим то же взаимоотношение, т. е. слабый и просто организованный, медленно растущий гаметофит, хорошо развивающийся только в воде или при ее изобилии, и быстро растущий, сложно построенный и способный сопротивляться высыханию спорофит. Ясно, что обладание двойным числом хромосом, короче, двойным ядром, чрезвычайно выгодно для организма. Ясно также, что естественный отбор должен давать в борьбе за существование преобладание тем растениям, диплоидный аппарат которых развит сильнее. Если в водной среде гаплоидные организмы и могут сравнительно счастливо заканчивать свой жизненный цикл, то на суше солнце и ветер быстро сокращают их жизнь. Но в воде существование гаплоидных организмов поддерживается только напряженностью их размножения, при полной нестойкости особи. Диплоид не таков - надо видеть, как рвет и треплет океанский прибой гибкое тело ламинарии, растущей близ берега на подводных скалах, чтобы оценить всю силу ее сопротивляемости.

 

Выше мы видели, что первый расцвет растительной жизни на суше был приурочен к приморским местностям, особенно к берегам лагунных озер и болот, лежащих между песчаными береговыми валами и подгорной террасой. Здесь впервые выработался тип растения, нижней своей частью находящегося в воде, а верхушкой в воздушной среде под прямыми лучами солнца. Споры, развивавшиеся в мелкой нагретой воде лагун, при понижении уровня воды, вследствие испарения, образовывали заростки в виде плоских зеленых лопастных пластинок. Отдельные участки их, выдвигаясь из воды и испаряя воду, вызывали возникновение токов воды, возмещавших испаряемую, и этим способствовали росту своих тканей. Образовывалось подобие первичного стебля. Если на таком стебле возникали споры или гаметы, то они падали в воду и там прорастали, образуя новые заростки, или же, сливаясь в воде, облегчавшей их движения, давали зиготы, полагавшие начало диплоидному поколению - спорофиту.

 

Позднее, проникновением на незатопляемую сушу, первобытные растения развили корень (часть спорофита) и получили способность использовать грунтовые воды, что дает возможность переживать промежутки между дождями. Осталось только выработать такой способ образования гамет и их слияния, который за неимением у корней данного растения свободной воды, позволял бы гаметам двигаться во внутренней среде самого растения. Теперь почти все клетки сложного растительного организма становятся диплоидными, почему оно приобретает и быстроту развития, и способность к расчленению клеток на ткани, способность к выработке защитных приспособлений, каких не знали его жившие у воды предки. Гаплоидными остаются только споры и вырастающие из них микроскопические заростки, защищенные тканями тела растения матери. Таким образом, выход растений на сушу сопровождался полным подчинением гаметофита спорофиту и сильным разрастанием последнего.

 

 

К содержанию книги: Происхождение и эволюция растений

 

 

Геологические периоды в развитие растительного и животного мира

 

Эры

Периоды

Господствующая группа растений и животных

Продолжительность периодов в миллионах лет

Кайнозойская

Четвертичный

Господство современных видов и создание культурных растений и животных

1

Третичный

Господство и разнообразие покрытосеменных (цветковых) растений. Постепенное развитие современной флоры, установление современных видов растений. Разнообразие млекопитающих, птиц, насекомых

69

Мезозойская

Меловой

Появление и развитие покрытосеменных (цветковых) растений, установление современных родов растений. Вымирание цикадовых и гинкговых. Появление красных известковых водорослей. Дальнейшее развитие рептилий, птиц и насекомых и млекопитающих

40

Юрский

Развитие и широкое распространение голосеменных-цикадовых, гинкговых и хвойных. Появление диатомовых водорослей. Исчезновение птеридоспермов. Пресмыкающиеся. Первичные птицы. Млекопитающие

40

Триасовый

Развитие саговников, гинкговых и хвойных. Развитие папоротников. Вымирание кордаитов. Развитие пресмыкающихся. Первые млекопитающие - сумчатые

35

Палеозойская

Пермский

Вымирание древовидных плауновых и хвощей; появление современных семейств папоротникообразных. Появление хвойных (Вауеrа и Wailchia). Распространение глоссоптериевой флоры. Рептилин

40

Каменно-угольный

Развитие папоротникообразных (древовидные плауны, хвощи, напоротники). Птеридоспермы и кордаиты. Расцвет амфибий. К концу периода - появление насекомых

50

Девонский

Псилофиты и первичные папоротникообразные растения. Первые голосеменные растения - птеридоспермы (папоротникообразные голосеменные). Возникновение грибов. К концу периода - вымирание псилофитовой флоры. Разнообразные рыбы. Двоякодышащие рыбы

35

Силурийский (В настоящее время перед силурийским периодом выделяют ордовикский продолжительностью около 85 млн. лет)

Первые наземные растения - псилофиты. Разнообразные морские беспозвоночные. Рыбы

35

Кембрийский

Первые признаки стеблевых растений. Преобладание трилобитов. Водоросли и бактерии

80

Пторотерозойская

 

Бактерии и водоросли. Простейшие животные

Около 700

Архейская

 

Известняки, м. б. бактериального происхождения

 

 

Последние добавления:

 

Биографии ботаников, биологов, медиков   Книги по русской истории   Император Пётр Первый