Вся электронная библиотека      Поиск по сайту

 

Виктор Шаубергер
ЭНЕРГИЯ ВОДЫ

Предварительное исследование геликоидальных труб

Доклад Франца Поппела

 

Предисловие

Отрывки из предисловия к докладу о предварительном исследовании геликоидальных труб с различными вариантами устройства стенок

Штутгартский технологический университет — профессор Франц Поплел

Предмет:

Переговоры от 9 февраля 1952 года в Штутгартском технологическом университете по поводу исследования моделей прямых и спиралевидных геликоидальных труб из различных материалов, сконструированных и предоставленных университету Виктором Шаубергером.

С отсылкой на:

доклад, подготовленной Институтом гигиены при Штутгартском технологическом университете, датированный 15 марта 1952 года (руководитель —профессор Франц Поп-пел)

На переговорах, проходивших 9 февраля 1952 года в Институте гигиены при Штутгартском технологическом университете, присутствовали:

1) профессор Франц Поппел;

2) помощник министра Кампф как представитель Федерального министерства водных ресурсов в Бонне; 3) Виктор Шаубергер, Зальцбург, Австрия;

I) Вальтер Шаубергер, Бад-Ишль, Австрия.

Предметом переговоров являлись несколько гем и вопросов:

1) Водные ресурсы и технические и научные проблемы, свя-

занные с ними.

2) Научный доклад Виктора Шаубергера, посвященный его исследованиям, открытиям, предложениям, и демонстрация завершенных проектов в области естественной гидравлики, а также некоторые наблюдения, объяснения и логические выводы, касающиеся сельского хозяйства, лесоводства, водных и энергетических ресурсов,

5) Краткий научный доклад Вальтера Шаубергера о неевклидовой (Гауссовой) концепции природы, основные положения квантовой физики и факты, включенные в теорию относительности, использующиеся для того, чтобы сделать акцент на центробежной динамики энергии природы, а также резонансные процессы во Вселенной,

1) Заявление профессора Поппела о нецелесообразности взглядов и утверждений Виктора и Вальтера Шауберге-ров. Профессор Франц Поппел представил свою точку зрения, согласно которой решающие области технологии были основаны на принципах классической механики, и поэтому все законы, касающиеся тока жидкостей или газов, также должны приниматься во внимание и с ними следует считаться. Более того, в гидравлике, как и в любой другой области, оптимальные и эффективные результаты были достигнуты при использовании Евклидовой геометрии. Из этих заявлений можно было бы сделать вывод, что разработки шау-бергергерских труб совершенно бесполезны. Поппел попросил разрешения не принимать участие в дальнейшей работе, ссылаясь на нецелесообразность потраченных усилий и времени.

i) Кампф безоговорочно согласился с точкой зрения Поппела и добавил, что Бонн был заинтересован этими научными исследованиями ввиду того, что они могли положить конец неквалифицированным и безоснователь- ным нападениям Виктора Шаубергера на общепринятую систему управления водными ресурсами. Бонн даже готов внести свой вклад в финансирование этих исследований.

6) Вслед за тем профессор Поппел объявил, что его универ-

ситет согласен провести ряд экспериментов с прямыми и рифлеными геликоидальными трубами и предоставить результаты в течение двух месяцев. Просьба Виктора Шаубергера о том, чтобы его сын, Вальтер Шаубергер, присутствовал при этих экспериментах, была удовлетворена.

7) Далее была определена цель исследования, круг вопросов, которые предстояло разрешить, и обсужден подраздел, касающийся формата серии экспериментов. Здесь шла речь о значительных сокращениях достаточно сложных вопросов, обозначенных в пунктах 1—5 научного доклада.

8) В пункте 6 рассматривался спорный вопрос, на котором Виктор Шаубергер хотел сделать акцент. Тема звучала так: «Техническая гидравлика и ее разрушительные последствия». С одной стороны, проф. Поппел разделил взгляды Шаубергера, с другой — Кампф категорически не принял их. В пункте 6 не только затрагивались вопросы и предположения, но и приводились научно доказанные факты и обоснованные доводы. Он охватывал следующие проблемы:

а) наиболее значительные изменения природного баланса происходят из-за механической коррекции речных насыпей и исправления речного русла (доказательство: состояние Рейна, Дуная и других водных водотоков);

б) несмотря на значительный ущерб, наносимый рекам вследствие неестественной и потому неверной регуляции течения, существующие методы все еще применяются на практике;

в) факты, которые нельзя опровергнуть, безошибочно доказывают, что осуществление таких коррективных действий по отношению к рекам, то есть осуществление механических методов регуляции водотоков, приводит к еще более сильному опусканию уровня водной поверхности, а через определенное время — к иссыханию ручьев и обмелению русел;

г) доклад о состоянии сельского хозяйства (Третьего рейха), датированный 4 февраля 1939 года, свидетельствует о том, что последствия исчезновения природных водоемов и обмеления рек стали настолько ощутимы, что следует опасаться расширения степных территорий;

д) малейшие изменения природных процессов могут оказать непредсказуемые последствия в будущем;

е) повышение температуры воды из-за нарушения природной системы движения и состава воды приводит к уменьшению тяговой силы и пропускной способности водотока, а в дальнейшем — к полному их исчезновению;

ж) несмотря на низкую скорость течения, естественно текущая вода обладает огромной тяговой силой, которая уменьшается изобретенными техническими средствами;

з) нет ничего более абсурдного, чем увеличение геологического градиента и укорочение водного пути, потому что в данном случае вода благодаря ее собственному весу смещается со своего естественного пути, тем самым устраняя предпосылки для необходимых природных преобразований;

и) гидравлика игнорирует:

•взаимодействие между тяговой силой и пропускной способностью водотока;

• естественные изгибы реки образовываются благодаря биодинамической форме движения;

• вращение струи воды вокруг собственной оси тоже происходит благодаря естественной форме речного профиля;

• должное ограждение (от избыточного тепла, солнечного света и т л.) обеспечивается благодаря естественному речному пути, отложению осадочных слоев;

к) естественная регуляция направления течения невозможна через механическое восстановление или перестройку речных берегов;

л) вода, кровь и соки растений — все это накопители и преобразователи, в которых происходят постоянные процес- сы синтеза и разложения. Они тем интенсивнее, чем большая доля воды, сока или крови движется естественным образом. В свете этого внешние факторы» увеличивающие скорость течения, не имеют никакого значения, в то время как внутренняя балансирующая скорость играет важную роль;

м) происхождение естественных сил воды, в том числе и тяговой силы, а также скорость течения определяется внутренними водными метаболическими процессами;

н) количество можно превратить в качество. Требуется лишь соответствующая организация и осуществление проектов.

 

Доклад о предварительных исследованиях геликоидальных труб различной конфигурации, проводившихся Институтом гигиены при Штутгартском технологическом университете, Германия

Руководитель: проф. Франц Поплел

Во время переговоров от 9 февраля 1952 года группой ученых, занимающихся биотехникой, были сконструированы различные модели прямых и спиралевидных геликоидальных труб из различных материалов, доступных Штутгартскому технологическому университету, стем чтобы окончательно разъяснить следующие вопросы:

1. Можно ли заставить воду двигаться по многомерному, заверяющемуся, извилистому, спиралевидному пути, пропуская ее через трубы?

2. Играет ли форма проводящей трубы решающую роль в достижении этого завихряющегося движения?

3. Играет ли материал, из которого сделана труба, решающую роль в достижении этого завихряющегося движения?

4. Происходят ли изменения молекулярной структуры воды благодаря естественному закручиванию потока?

5. Может ли закручивающееся течение препятствовать образованию осадка на стенках труб?

К вопросу 1.

Многомерное закручивающееся спиралевидное течение

Если воду, содержащую крупные взвешенные частицы, сначала взболтать в стеклянной мензурке, а затем оставить ее вращаться самостоятельно, то взвешенные частицы сами по себе сконцентрируются около оси вращающегося цилиндра воды. Это известное естественное явление уже используется на практике в циркулярном пескоуловительном механизме компаниями Geiger, Karlsruhe и в «Гидроциклоне» компании Stami-Carbon для очищения воды от примесей. В обоих случаях содержимое цилиндрических контейнеров вращают, подавая струю воды по касательной к окружности цилиндра, что» как считается, и является причиной концентрации взвешенных частиц по вертикальной оси поворачивающегося цилиндра жидкости. Однако, если воду подавать из большого вместительного контейнера в водозаборную трубу и при этом заставлять ее вращаться то быстрее, то медленнее, сформировывается всасывающая воронка, размер и глубина которой изменяется в зависимости от скорости течения в водовыпуске. Внимательные люди часто наблюдают формирование таких всасывающих воронок в сливах ванн и бассейнов. Закручивание воды в трубе развивается от входного отверстия в направлении водовыпу-ска, и дальнейшее движение воды непосредственно в трубе водовыпуска становится результатом этих взаимных влияний, течение состоит из одновременно объединенных нескольких трехмерных пространственных кривых, которые можно сделать видимыми нижеизложенным образом.

Вода вытекает из сосуда, в котором постоянно поддерживается уровень воды, в стеклянную трубу 40 мм1 в диамет-

Чтобы помочь читателю, незнакомому с метрической системой мер, избежать трудностей, связанных с употреблением британских или американских единиц измерения, издатель предоставляет следующие соотношения: 1 литр (л) = 0,22 брит, галлонов = 0,26 амер, галлонов; 1 миллиметр (мм) = 0,03937 дюйма; 1 кв. миллиметр (мм3) = 0,00115 кв. дюйма; 1 куб. миллиметр (мм1) 0,00006102 дюйма3; 1 сантиметр (см) = 0,3937 дюймов, 1 кв. сантиметр (смг) = 0,155 кв. дюйма; 1 куб, сантиметр (см1) = 0,06102 дюйма3; 1 дециметр (дм) = 3,937 дюйма; 1 кв. дециметр (дм2) = 15,5 кв. дюйма; 1 куб. дециметр (см1) = 61,02 дюйма3; 1 метр (м) — 39,37 дюйма (3,28 футов); 1 кв. метр(м2)= 10,764 кв, футов; 1 куб, метр (м*) = 35,315 дюйма1 ре и продвигается вперед с помощью резинового брандспойта 19 мм в диаметре к водоотводу. Если, как в случае испытания 1 (чертеж № 1), сосуд и подача воды были организованы таким образом, что могло развиться только очень слабое спиралевидное движение во входном отверстии трубы, то в случае испытания 2 (чертеж № 2) наращиванию спирального движения преднамеренно помогали форма трубы и тангенциальный приток воды. В испытываемую трубу диаметром 40 мм с площадью сечения 0,125 дм2 подавалась вода со скоростью 0,2 и 0,21 л/сек так, чтобы скорость течения в ней была равна около 1,6 — 1,68 дм/сек. Это уже в пределах скорости бурного потока. Тонкая шелковая нить, привязанная к концу, опускалась прямо вниз, в испытательную трубу, и в состоянии покоя, благодаря потоку воды, текущему через трубку, вовлекалась в медленное вращательное движение и становилась похожей на закрученную трехмерную спираль. В эксперименте № 2 искривление нити было сильнее, чем в первом, благодаря более интенсивному закручиванию на водозаборе. Также, помимо этого, было установлено, что мелкозернистые нерастворимые примеси, равномерно распределенные по воде с помощью мелкого сита, собрались в маленькие скопления на протяжении трехмерного спирального пути, обозначенного нитью. Таким образом, можно сделать вывод, что поток, образовывающийся в трубке, не только имеет тройную спиральную конфигурацию, но и вся конфигурация одновременно вращается вокруг собственной оси. (Доказательство: закручивание и одновременное вращение шелковой нити.) Это, помимо всего прочего, доказывается тем, что воздух, содержащийся в воде, концентрируется на протяжении трехмерной спирали в трубе. В зависимости от размера пузырьков во вращающемся околоспиральном водном потоке воздух либо течет вместе с водой, либо снова поднимается вверх. Чтобы более пристально исследовать это многомерное за-вихряющееся движение, были подвешены сразу три шелковые нити к углам распорки в виде равностороннего треугольника

 

Чертеж 1

 

 

Несмотря на то что каждая из этих трех нитей была закреплена при помощи распорок в середине, а также на нижнем конце, можно было наблюдать образование трех спиралей во время тока воды по трубке. Кроме того, нити в этом новом расположении всегда были вынуждены изгибаться в трехмерные спиральные конфигурации, вне зависимости от их веса и того, что они были привязаны к распоркам. Благодаря более сильной жесткости трех сплетающихся вместе нитей, закреплениям и тройному весу их изгибы были менее похожи на естественные, чем изгибы единственной нити. Потом из середины и дна трубы были изъяты распорки, чтобы полностью удостовериться в том, что сплетение трех нитей не было вызвано только лишь вращением распорок, в свою очередь вращающихся под действием потока воды. Но и после этого три нити закручивались, как и раньше. Это наглядно показывает то, что сплетение трех нитей происходит благодаря естественным многомерным завихрениям воды.

Внутри трубы эти завихрения накладываются на периферические точно такой же спиральной конфигурации. Это явление можно было наблюдать с помощью железных опилок. Было заметно, что во время протекания воды по трубе шаг сильно закручивающейся спирали менялся, он постепенно увеличивался, и по мере его увеличения вокруг спирали увеличивались скопления частиц.

Все эти потоки, которые в трубке накладываются один на другой и которые впервые были определены с помощью описанных выше экспериментов, должны быть тщательно исследованы, в особенности их образование и действие.

Если бы здесь были активны только центробежные силы, то свисающая вниз по центру шелковая нить втягивалась по направлению к стенкам. Также такие силы никогда не спровоцировали бы обвивание трех нитей на протяжении слабо закрученной спирали. Для центробежно активных сил было бы также невозможно закрутить три нити на периферических зонах трубки в одну нить, расположенную по центру, которая затем принимала спиралевидную пространственную конфигурацию. Такое могли сделать только центростремительные силы, чья сила воздействия во много раз превышала центробежные

 

Чертеж 2 10- 1810

Чертеж

.

Многомерный завихряющийся поток, таким образом, может называться результатом действия центробежно направленных сил. Они появляются благодаря самой системе движения, их с самого начала можно определить и пронаблюдать.

Кстати, можно сделать вывод, исходя из изменения шага сильно закручивающейся в пространстве спирали и из наблюдений за флокуляцией и миграцией взвешенных частиц по направлению к центру, что действие центробежных сил ослабевает по мере продвижения потока в трубах, а действие центростремительных сил, которые всегда преобладают над центробежными, остается неизменным.

Наблюдаемые процессы флокуляции, однако, не могут объясняться только лишь влиянием механических сил. Согласно большинству предположений, касающихся коагуляции твердых тел, вполне допустимо, что концентрация твердых частиц во время движения потока вызывается электрофизическими силами.

За течением воды в прямых трубах наблюдали различными способами, и стало совершенно очевидно, что в таких грубах, начиная от самого водозаборника, более или менее интенсивно развивается спиралевидное движение, которое, в свою очередь, провоцирует закручивающееся движение на протяжении всей длины спирали, на которое накладывается гечение на протяжении наиболее сильно закрученных изги-Зов спирали.

 

К вопросам 2 н 3.

 

Влияние формы и материала труб на образование и развитие ювихржощегося движения

Наложение потоков друг на друга, которое можно заме-гить на протяжении слабо или сильно закрученной спирали, вызывает их интенсивное сопротивление друг другу, так как по краям обоих течений образовываются воронки; кроме гого, они различаются по скорости и направлению течения. Из этого процесса можно сделать логический вывод: увели-гение водовыпуска в трубе может быть ускорено в том слу- чае, если правильно ограничивать процесс взаимного влияния потоков друг на друга из-за образования воронки.

Так как благодаря ритмично изгибающейся форме в геликоидальных трубах автоматически возникает сильный спирально закрученный поток, они имеют большую пропускную способность, чем прямые трубки с той же площадью сечения при таких же остальных условиях.

Если процессы движения, возникающие по всей длине благодаря спиральным изгибам геликоидальной трубки, также синхронны с импульсами, которые возникают благо-царя скорости сквозного течения, то, в случае с сильно изогнутой спиралевидной трубкой, вода начинает двигаться по геликоидальной конструкции, свободно колеблясь и осциллируя, то есть не касаясь стен трубы и не образуя затрудняющие течение отдельные воронки- В этом случае в результате действия многомерного закручивающегося движения стены трубы почти не будут омываться водой- Можно сделать следующее гипотетическое умозаключение: при особых условиях в геликоидальных трубах вполне реально свести на нет потери скорости, обусловленные трением, которые получаются в прямых трубах.

То же самое можно проделать с геликоидальными трубами, в которых внутри прямой трубы встроена форма слабо закрученной спирали, то есть завихренное движение воды обуславливается особой внутренней конфигурацией стен грубы. Такие винтообразные вставки, внедренные внутрь стенок прямых или изгибающихся геликоидальных труб, благодаря характеру течения нетолько будут способствовать формированию закручивающихся процессов, но и стабилизируют их полезную конфигурацию — как, например, в случае с нарезным стволом ружья.

Гипотезы и умозаключения, описанные выше в ответе на вопрос 1, были проверены на достоверность. Были произведены измерения воздействия сил трения и скорости водовьшу-гка в семи различных, прямых и спиралевидных, трубах с раз-ничным поперечным сечением и из различных материалов.

Из сосуда с постоянно поддерживающимся уровнем воды экспериментальной установки № 1 вода проводилась в трубки для того, чтобы исследовать ее при помощи резинового шланга 19 мм в диаметре. Такого же диаметра резиновый шланг служил для того, чтобы подводить воду к контрольному створу. Конструкция состояла из трубы водовыпу-ска, которая конически расширялась во внутреннем диаметре с 20 мм до 40 мм и имела два штуцера для подсоединения к аппаратам, измеряющим понижение давления (чертежи 3 и 4). Труба водовыпуска подсоединена к трубе, направляющей воду в водосбор. Для измерения времени, за которое вытекающая через трубу вода полностью заполняла 15-литровый измерительный сосуд, был использован секундомер, и исходя из полученного результата подсчитывалась скорость течения. Гидростатический напор определяли при помощи трех измерительных труб, которые напрямую примыкали к контрольному створу. Таким образом, постоянно контролировалась разность в высоте h между уровнем воды в сосуде и на водовыпуске. Кроме того, измерялась разница давлений, возникающая во время протекания воды по трубе водовыпуска.

Устанавливаемые таким образом расходы воды q зависят от величины силы трения, и на чертеже 5 представлены графики этой зависимости. Для построения графиков использовалась двойная логарифмическая система координат. Принимая во внимание различные поперечные сечения f различных тестируемых труб, в данном случае скорость течения v не была графически отражена в двойной логарифмической форме. На графике был отражен измеренный расход воды, который получили, измеряя различия уровней воды в высоте h. Линии, соединяющие взаимосвязанные величины, которые можно вкратце называть q h-линии, должны быть прямыми, если основываться на формуле Вай-сбаха, согласно которой

Согласно этому базисному уравнению измеренные величины труб с одинаковыми поперечными сечениями и с Одина ковой шероховатостью стен трубы должны, таким образом, находиться на прямой линии. В случае различных сечений значения величин, естественно, смещаются на величину, пропорциональную .

 

 

 

 

 

 

Как показано на чертеже 5, q h-линии различных испытываемых труб фактически очень сильно отклоняются от прямой и показывают характерный курс колебаний, как, например, в случае со спиралевидной геликоидальной медной трубой (тестируемая труба № 2), относительно которой не исключена возможность, что определяемые параметры не были установлены с достаточной точностью.

Гладкие прямые медные трубы с неизменным (тестируемая труба № 3) и коническим (тестируемая труба № 5) сечением — из всех лучше всего соответствуют постулату гидравлики h — с х q2. В случаях с другими испытательными трубами, кроме колеблющегося направления кривых, направление соединяющих линий характеризуется отношением, в котором экспонент q меньше 2. Для испытательной установки (тестируемая труба № 1) непосредственно, также как и в тестируемой трубе № 2 (спиралевидной геликоидальной трубе), тестируемой трубе № 4 (прямая стеклянная труба) и тестируемой трубе № 7 (прямой конической геликоидальной трубе с большим поперечным сечением), экспонент уменьшился бы до 1,67. В случае с тестируемой трубой № 6 (коническая спиралевидная геликоидальная труба) он фактически уменьшается до 1,57, и с тестируемой трубой № 8 (прямой конической геликоидальной трубой — меньшее поперечное сечение) он достигает самого низкого значения — 1,51. Это позволяет сделать заключение, что изви-вание и скручивание труб могут оказывать как благоприятное, так и неблагоприятное влияние на процессы течения благодаря изменению скорости основного потока.

Если, например, рассматриваются тестируемые трубы № 6 и 5, которые имеют одинаковую длину и коническую форму поперечного сечения, то значение измеренных величин и положение соединяющих линий в этих случаях будут свидетельствовать о том, что изгибы и скручивание в тестируемой трубе № 6 при измерении оказывают неблагоприят- ный эффект на ее полезность. Прямая коническая медная труба с гладкими стенками (№ 5) при том же самом различии в высоте водных уровней поставляет воды больше, чем геликоидальная труба. Различие в водовыпуске, кстати, постоянно уменьшается по мере увеличения различий в высоте и при значении h = 28 см полностью сводится на нет. При больших различиях в высоте геликоидальная труба (№ 6) поставляет больший объем воды, чем прямая медная труба (№ 5). То же должно быть применимо к тестируемой трубе № 7, qJ = 0,17 л/сек, что, согласно предположению, превышает q прямой, гладкой медной трубы (№ 5) в точке, где h = 30 см. Сейчас это может быть подтверждено доскональным анализом измеренных данных труб № 2, 3,4. Упрямой стеклянной трубы (№ 4) при равном различии в высоте h всегда при любых условиях значение меньшее q, чем у прямой медной трубы (№ 3) и спиралевидной геликоидальной медной трубы, но вплоть до различия в высоте 10,5 см труба №3 поставляет воды больше, чем спиралевидная геликоидальная труба (№ 2). Отсюда можно сделать вывод, что работа спиралевидных геликоидальных труб всегда эффективнее.

Выводы, сделанные из направления соединяющих линий измеренных параметров труб № 5,6 и 7 и касающиеся благоприятного влияния закручивания этих труб на поток, что находится вне области измерения, также справедливы для тестируемых труб № 2,3 и 4 по установленным измеренным параметрам. Изменения от неблагоприятных до благоприятных влияний на поток, вызванные закручиванием труб, — как ожидается, принадлежат области измерения данных труб № 5,6 и 7 по сравнению с прямыми, гладкими трубами, уже имеют место в случае с тестируемыми трубами № 2, 3 и 4 и находятся в пределах области измерения. Поэтому следует подвергнуть эти испытательные трубы полному анализу.

Из данных таблицы 1 становится ясно, что градиенты давления, значения h и величина водовыпуска не имеют никакой единой тенденции. Чтобы определить, являются ли наблюдаемые отклонения результатом погрешностей в измерении, значения, основанные на величине водовыпуска, были отображены в виде графиков (чертеж 6) в двойной ло гарифмической системе координат. Следует принимать во внимание, что линии соединения измеренных значений прямой медной трубы (№ 3) и прямой стеклянной трубы (№ 4) имеют ту же тенденцию, что и данные спиралевидной геликоидальной трубы (№2),а также у испытательной установки (№ 1), а с другой стороны, отображают характерные колебания.

 

 Чертеж 5

 

 

Чертеж 6

 

 

Результаты этих измерений, таким образом, доказывают, что собственно испытательная установка из-за ее полукруглой, свисающей вниз конфигурации вызывает эффект, подобный эффекту закручивающейся трубы, который, однако, полностью или до самой большой степени аннулируется использованием поперечного сечения прямой трубы. В случае включения спиралевидной геликоидальной трубы (№ 2) не предполагается, что эффект нисходящей тестируемой трубы (№ 1) нейтрализуется, но, возможно, в дальнейшем даже увеличится. Следовательно, чтобы поддерживать необходимую нейтрализацию трения в испытательных трубах для водовыпуска q, необходимо далее уменьшать различия в высоте уровня воды около градиентов давления при выходе потока. На чертеже 7 водовыпуск q, зависящий от значений (h — ?h), отображен на графике в двойной логарифмической системе координат.

Водовыпуск прямых и геликоидальных труб

 

Водовыпуск

q л/сек

Скорость течения

V

см/сек

h см

ДА см

h-iJi см

1) Экспериментальная установка без труб, но с коническим водозабором и водовыпуском тестируемой трубы и с резиновым шлангом 19 мм в лиаметое

0,148

ОД 66

0,187

0,215

0,231

0,247

52,3

58,7

66,1

76,0

81,6

87,3

7,35

8,81

10,70

12,85

15,30

17,48

0,32 0,49 0,60 0,70 0,80 1,10

7,03

8,32

10,10

12,15

14,50

16,38

2) Спиралевидная геликоидальная медная труба приблизительно 1,45 м длиной с площадью поперечного сечения 5,05 смг

0,130

25,7

6,0

0,34

5,66

0,168

3,93

10,05

0,47

9,58

0,206

40,8

13,7

0,62

13,08

0,215

42,6

15,7

0,70

15,00

0,234

46,3

18,0

1,20

16,80

0,250

49,5

19,8

1,36

18,44

+ 0,283

56,1

21,2

2,15

19,95

0.294

58.3

22.1

1,55

20.55

+ Данные получены в ходе различных серий экспериментов

0,303

60,06

24,55

1,85

22,70

0,319

63,38

26,9

2,05

24,85

+ 0.320

63.4

25.7

2,9

22.8 5,0

3) Прямая медная труба. диаметр 2,54 см, длина 1,45 м

0,123

24,4

5,3

0,30

 

 

0,177

34,6

16,4

0,50

9,9

0,211

41,7

15,6

0,65

14,95

0,246

48,7

20,2

0,85

19,75

0.288

_57,Q___

21,0

25.5

1,20

24.70

4) Прямая стеклянная труба, диаметр 2,54 см, длина ] ,45 м

0,106

 

 

5,5

0,25

5,25

0,155

30,7

16,5

0,30

10,20

0,192

38,0

15,6

0,55

14,75

0,222

43,9

19,6

6,60

19,00

5) Гладкая коническая медная труба, длина 1,45 м

0.275

54.4

25.3

0.85

24.45 (

0,073

 

5,65

0,20

5,45 ,

0,1035

 

9,80

0,22

9,58

0,1200

 

14,65

0,20

14,45 |

0,1445

 

20,70

0,30

20,40 |

0.1555

 

24J5 Г 4,60

0,42 0,15

24.33 |

6)Коническая спиралевидная геликоидальная медная труба, длина 1,45 м

0,0525

 

 

 

 

 

4,45 1

0,0820

 

9,30

0,23

9,07 I

0,1075

 

14,25

0,30

13,95 |

0,1320

 

20,55

0,38

20,17 J

0.1565

 

26,40 5,35

0,62

25.78 I

7) Прямая коническая геликоидальная медная труба с большим поперечным сечением, длина 1.45 м

0,0565

 

 

 

0,17

5,18 |

0,0844

 

10,70

0,32

10,38 |

0,1060

 

15,20

0,38

14,82 |

0,1240

 

20,40

0,22

2U8;j

 

 

 

 

 

8) Прямая коническая геликоидальная медная труба с меньшим поперечным сечением, длина 1.45 м

0,0292

 

5,90

0,10

5,80 j

0,0438

 

10,70

0,10

10,60 i

0,0545

 

15,7

0,10

15,20 |

0,0665

 

20,70

0,13

20,57 J

0,0_788 j

 

26,40

0,18

26.22 f

 

Таблица 2 Подо вы пуск н потери, связанные с силой трения прямых и спиралевидных труб из меди и стекла

 

Водовыпуск

1

Потери, связанные с силой трения в

Прямая стеклянная трубя

 

 

спиралевидных геликоидальных

прямых

 

 

 

 

медных тоубах

 

 

л/сек

см  см

СМ

0.12

0.10

0,5

1.85

0,13

0.19

0.20

2.07

0,14

0.00

0.23

2.20

0.15

0,40

0.33

2.48

0.16

0,95

0.45

2.85

0.17

0.95

0.70

3.25

0.18

0.65 

1.20

3.75

0.19

0.45

1.85

4.25

 0.20

0.95

2.25

4.65

0.21

2.05

2.55

5.05

0.22

2.50

2.65

5.30

0,23

2.45

2.95

5,45

0.24

2.10

3.10

6.00

0.25

1.70

3.24

579

0.26

 

1.25

3.35

5.60

0.27

0.80

3.50

6.20

0.28

0,35

3,75 .

6.65

0.29

0.00

4,00

7.00 j

0.30

0.00 

4.30

7.30

0.31

0.10

 

0.32

0.80

j 4.90

7.30

! 0.34

3.50

4.90

i

0.36

4.60

4.90

 

0.38

3.70

5.05

 

0.40

2.50

5.38

i

0.42

1.60

5.80

 

0.44

0,70

6.50

 

 

Соединительные линии взаимосвязанных измеренных величин водозабора и водовыпуска экспериментальной установки № 1, так же как соединительные линии прямых стеклянных и медных труб, имеют точно такие же направле юсходят по величине значения спиралевидных геликоидальных труб, тоже отображают характерные колебания по-ледних. Результаты измерений, полученные таким образом, затем использовались для определения потерь, вязанных с силой трения в тестируемых трубах длиной ,45 м, как обозначено на чертеже 7, каждая из ординат гежду q h-линиями экспериментальной установки и тес-ируемых труб установлена и отображена в таблице 2.

 

-

 

Чертеж 7

 

 

На чертеже 8 водовыпуск трубы графически отображен в 1екартовой системе координат, основанной на значениях илы трения и соответствующих измеренных значениях во-ювыпуска, соотносимых вертикально и горизонтально. Хо-юшо заметно, что все линии соединения отображают ха-гактерный колеблющийся курс, который наиболее ясно [рослеживается в случае со спиралевидной геликоидальной рубой (№ 2).

Бесспорно, исходя из конфигурации трех кривых на графике можно сделать вывод, что при равных значениях силы рения спиралевидная геликоидальная медная труба имеет юлыпую продуктивность, чем прямая медная труба с той же ушной и таким же поперечным сечением. Эти результаты, ie применимые относительно турбулентного потока, в на-тоящий момент считаются верными, однако могут рассматриваться как подтверждение гипотез, выдвинутых на ►сновании процессов течения, развивающихся в прямых рубах благодая винтообразному притоку воды.

С синхронизацией скорости и формы потока в спирале-1идной или спиралевидной геликоидальной трубе было за-1етно фактичекое уменьшение силы трения до нуля.

Полное исчезновение силы трения может происходить, :огда кинетическая энергия воды, текущей в спиралевид-юй геликоидальной трубе, взаимодействует с ее спирале-идным движением, образующимся во входном отверстии ши благодаря нарезке на стенах трубы. Взаимодействие юспроизводит пространственные колебания воды, точно оответствующие закрученной конфигурации испытатель-юй трубы

В этой связи, однако, центростремительно направленная сила всасывания, являющаяся результатом закручивания течения, также вносит определенный вклад. Относительно экспериментальных моделей, исследованных в вопросе 1, фактически воздействие этой силы настолько велико, что подвешенные за один конец шелковые нити были скручены в трехмерную пространственную спираль, соответствующую форме потока, несмотря на гравитационные силы притяжения, действующие на них. Следует принимать во внимание, что те же самые слабо изогнутые потоки с сильным, центростремительно направленным закручивающимся движением и сильно изогнутые потоки с меньшим закручи-ваючимся действием, наблюдаемым в вертикальной стеклянной трубе в испытательной установке 1, накладывались друг на друга, и это препятствовало их движению. В то же время кинетическая энергия воды образуется благодаря комбинации спиралевидной формы и нарезки через протекание воды по трехмерным спиральным и винтообразным стенкам трубы.

В случае со спиралевидной геликоидальной трубой (№ 2) имеют место следующие значения водовыпуска и скоростей потока.

Значение трения в спиралевидной геликоидальной трубе приближается к нулю:

когда q = 0,14 л/с или v = 0,28 м/с, и когда q = 0,19 л/с или v = 0,39 т/с, и когда q = 0,38 л/с или v = 0,60 м/с, и когда q = 0,46 л/с или v = 0,92 м/с и достигает максимального значения;

когда q = 0,127 л/с или v = 0,254 т/с, и когда q = 0,165 л/с или v = 0,330 м/с, и когда q = 0,225 л/с или v — 0,430 м/с, и когда q = 0,360 л/с или v =.....

В чертеже 9, который яшшется наиболее всесторонним вдполнением к чертежу 8, примечательно, что водовыпуск и гладких и прямых труб подвергается ритмичным колебани- ям, очень похожим на таковые у спиралевидной геликоидальной трубы. Это, по-видимому, объясняется тем, что вода спирально закручивается во время подачи на водозаборнике экспериментальной установки, и тем, что установка имеет U-образную форму. Направление линий соединения, соответствующих измеренным значениям, даже позволяет предположить, что здесь мы имеем дело с двумя связанными с водовыпуском колебаниями, расположенными одно на другом, которые, вероятно, являются результатом объединенного действия, относящегося к скручиванию движения и конфигурации испытательного стенда.

Кроме того, следует отметить, что q h-линия прямой стеклянной трубы (№ 4) в диапазоне водовыпуска от 0,13 до 0,20 л/сек абсолютно точно следует за кривой, которая в соответствии с принципом Вайсбаха описывается отношением

Н = 118.x tf

В сразу следующем после этого диапазоне большего водовыпуска тем не менее q h-линия стеклянной трубы отклоняется очень заметно от этого фундаментального уравнения Вайсбаха. Водовыпуски увеличиваются намного быстрее с увеличением значения силы трения, чем это ожидаемо согласно основному закону Вайсбаха. Это результат процесса закручивания потока на водозаборе и U-образ-ной формы испытательной установки.

Низлежащая часть q h-линии для прямой медной трубы идет совершенно параллелью к q h-линии стеклянной трубы; она смещается вниз относительно уровня трения h = 2,5 см. Потери, связанные с силой трения в медной трубе в области, где q = 0,13 кО, 20 л/сек, составляют толькоЬ=118х q2 — 2,5, несмотря на большую жесткость стен медной трубы по сравнению со стеклянной.

Это сокращение уровня трения при прохождении водных потоков через медные трубы может объяснить только тот факт, что медь более благоприятна для формирования закручивания потока, чем стекло. Как было уже обнаружено ранее, силы всасывания проявляются в потоке воды через это закручивающееся движение. Они и приводят к наблюдаемому сокращению трения. Величина этой всасывающей силы может быть условно определена посредством очень точного уменьшения трения, которое происходит самопроизвольно в областях с уменьшенным трением. Закручивающееся движение, рождающееся в медной трубе, производит дополнительную всасывательную способность А, где

А = 2,5 q в см г/сек в низлежащей области q h-линия и которая даже повышается в дальнейшем с увеличением водовыпуска от 325 до 500 см г/сек.

Не боясь заблуждений, можно предположить, что основное уравнение Вайсбаха для трения в трубах также справедливо при значении водовыпуска больше, чем 0,2 л/сек, если на водозаборнике создается препятствие для образования закручивающегося движения. Отсюда возможно дальнейшее развитие параболы для уровня трения по закону h = 118 • q = 0,2 л/сек. Разница в ординатах между этими параболами и соединительными линиями трех тестируемых труб отражает уменьшение уровней трения, и, как следствие этого, также может быть определена сила всасывания, которую создает закручивающееся движение воды и которая, как описано выше, формирует основу для подсчета всасывающей способности.

Чтобы проиллюстрировать этот ход мыслей, следует сказать, что значение силы всасывания в зависимости от водовыпуска графически отображается на 10-м чертеже. С его помощью была определена всасывающая способность А и отражена в чертеже 11 в виде q — А-кривых в зависимости от водовыпуска.

В случае со стеклянной трубой всасываающая способность постоянно увеличивается вплоть до А = 850 см г/сек при водовыпуске q = 300 см3/сек. Медная труба поставляет почти тот же объем, а всасывающая способность в ней приближается к А= 1860 см г/сек. То есть материал, из которого сделана труба, может интенсифицировать всасывающую способность воды на 1860—850 = 1010 см г/сек. С водовыпу-ском, равным 310 смУсек, всасывательная способность спи ралевидных геликоидальных труб достигает своего максимального значения в исследуемой области измерения, а именно А = 310» 11,1 - 3450 см г/сек. Это в 4,05 раза больше, чем у стеклянной трубы, ив 1,85 раза больше, чем у прямой медной.

 

Чертеж 10

 

Направление qh- и q А-линий в отношении трех тестируемых труб, показанное на чертежах 10 и 11, описывает ритмическое колебание тенденции возрастания, четко видны постоянные и уменьшающиеся значения всасывания с возрастанием водовыпуска.

В зонах возрастания значения всасывания и всасывающие способности, увеличивающееся благодаря многомерному закручиванию потока, всегда сильнее, чем значение трения, которое, согласно формуле Вайсбаха, увеличивает нормальное турбулентное течение в трубах. Интерпретация и оценка наблюдений, обозначенных выше, позволяет сделать гипотетическое заключение о том, что синхронизация кинетической энергии текущей воды дает больше энергии благодаря закручиванию труб, чем требуется для того, чтобы преодолеть воздействие силы трения. Так можно получить постоянно возрастающее ускорение воды.

Однако это ускорение не может принять безграничное возрастание, поскольку области возрастания силы всасывания периодически сменяют зоны постоянной или уменьшающейся силы. Эти смены происходят только тогда, когда превышен оптимальный уровень синхронизации всех потоков, что приводит к усилению поступательного компонента движения при ослаблении вращательного и колебательного движений. В результате происходят различные асинхронные комбинированные действия налагающихся друг на друга кинетических процессов.

Направление кривых показывает, что в изученной области измерений они состоят из относительно длинных участков, на которых возрастает всасывающая способность, которые прерываются более короткими участками постоянной и уменьшающейся всасывающей способности. В областях постоянного увеличения значения силы всасывания прирост энергии, воникающий благодаря закручиваюшемуся движению воды — его можно наблюдать в стеклянной трубе, — настолько же велик, как и энергия, которую потребляет нормальный турбулентный поток. Однако прирост энергии в случае с медной трубой может быть намного большего значения, чем нормальное потребление энергии в турбулентном течении.

 

 Чертеж 11

 

В зонах уменьшения значения силы всасывания и всасывающей способности кинетическая энергия текущей и вращающейся воды не синхронизирована с колебательными движениями. Через это интенсифицируется турбулентность потока до такого уровня, что потребление энергии, требуемой для передвижения воды в трубах, намного больше, чем прирост энергии, получающийся благодаря закручивающемуся движению.

Таким образом, нельзя игнорировать тот факт, что данные наблюдения могут не соответствовать реальности. Но их использовали с тем, чтобы получить примерные представления о величине сил, рождаюших феномен закручивающегося движения. Дальнейшие эксперименты должны пролить свет на их силу и влияние. Вообще, применение уже известных явлений на практике вполне осуществимо и должно не просто принести пользу, а совершить революционный переворот в сфере транспортировки газов и жидкостей.

Направления q h, q — Н, q — А позволяют признать превосходство спиралевидных геликоидальных труб vis-a-vis медных прямых труб и непригодность стеклянных. Вкратце ответ на вопросы 2 и 3 можно сформулировать следующим образом: форма и материал труб имеют решающее значение для формирования завихряющегося движения и влияют насилу всасывания и всасывающую способность течения.

 

К вопросу 4.

Структурные изменения воды как следствие многомерного закручивающегося движения воды

Несмотря на то что нельзя точно установить характер структурных изменений в воде, происходящих в результате закручивающегося движения, весьма ясно из экспериментов, описанных в вопросе, что даже в прямых трубах — в тех, в которых потоки воды текут синхронно, — это заверяющееся движение способно вызвать флоктуации, которые, отдельно от механической агломерации твердых частиц, могут объясняться только электрофизическими эффектами.

Факты, описанные в вопросах 2 и 3, свидетельствующие о том, что материал трубки имеет особенно важное значение для формирования заверяющегося движения воды, не могут основываться только на гидродинамических эффектах, они также объясняются электрофизическими явлениями, связанными с огромной проводящей способностью меди и взимодействием с водой.

Эти заключения подтверждены наблюдениями, где были задействованы шелковые нити. Потемнение медных вставок, которое не происходило в состоянии покоя и которое впервые появилось при сильном потоке воды, указывает на небольшие структурные изменения в этих зонах. Доказуемо, что электрофизические процессы, вызванные заверяющимся движением, могут быть определены через флуктуацию или интенсивность этого движения.

 

К вопросу 5.

Предотвращение осадкообразования

В ответе на вопросы 2 и 3 мы определили, что вода в спиралевидной геликоидальной трубе сама по себе движется свободно осцилирующим образом, если кинетическая энергия текущей воды синхронизирована с изгибами спирали. Можно предположить, что велика вероятность того, что при гаких условиях не будет никакого осадкообразования. Это не относится к тем случаям, когда транспортируемая жидкость содержит большое количество растворенных солей,

Штутгарт, 15 марта 1952 г.

Подписано: Франц Поппел, руководитель Института гигиены при Штутгартском технологическом университете, Германия,

 

Примечания

1. В данном варианте экспертного заключения Штутгартского технологического университета было сделано только несколько незначительных сокращений текста.

2- Выделение различных заголовков в тексте было сделано позже, при переводе.

3- Фотографии, относящиеся к кинетическим эффектам в вертикальной экспериментальной стеклянной трубе, которые показывают закручивание шелковых нитей, железных опилок и гидрофобных веществ, не были опубликованы из-за их плохого качества. Зато процессы подробно изложены в тексте.

Корректность текста засвидетельствовал Ингеборг Шау-бергер.

 

 

К содержанию книги: Шаубергер Виктор – Энергия воды

 

 

Последние добавления:

 

Агрохимик и биохимик Д.Н. Прянишников

 

Костычев. ПОЧВОВЕДЕНИЕ

 

Полынов. КОРА ВЫВЕТРИВАНИЯ

 

Тюрюканов. Биогеоценология. Биосфера. Почвы