Вся электронная библиотека      Поиск по сайту

 

ПЕРЕЛЬМАН. БИОКОСНЫЕ СИСТЕМЫ

ВОДОНОСНЫЕ ГОРИЗОНТЫ

 

Александр Ильич Перельман

 

Смотрите также:

 

Перельман - Геохимия ландшафта

 

Перельман - Круговорот атомов в геологии

 

Живое и биокосное вещество в биосфере

 

Биокосные системы. Формирование осадочных пород

 

Геология

геология

Основы геологии

 

Геолог Ферсман

 

Геохимия - химия земли

 

Гидрогеохимия. Химия воды

 

Минералогия

минералы

 

Почва и почвообразование

 

Почвоведение. Типы почв

почвы

 

Химия почвы

 

Круговорот атомов в природе

 

Книги Докучаева

докучаев

 

Происхождение жизни

 

Вернадский. Биосфера

биосфера

 

Биология

 

Эволюция биосферы

 

растения

 

Геоботаника

 

 Биографии геологов, почвоведов

Биографии почвоведов

 

Эволюция

 

Водоносные горизонты с окислительной средой (кислородные) первого ряда

 

Они обычно имеют рыжий или желтый цвет от пленок гидроокислов железа, покрывающих частицы пород. Поэтому водоносные горизонты первого ряда легко диагностировать по цвету пород. Это относится как к современным, так и к былым водоносным горизонтам. Кислородный состав вод определяет присутствие аэробных бактерий, энергично окисляющих органические вещества.

 

Ранее полагали, что свободный кислород в основном характерен для грунтовых вод, в то время как в подземных водах господствует восстановительная бескислородная среда. Гидрогеохимик А. И. Германов в начале 50-х годов показал, что в складчатых областях в районах развития горного рельефа кислород по трещинам проникает на многие сотни метров. Еще более интересные факты обнаружили Я. Б. Смирнов и известный исследователь подземных вод Средней Азии Б. А. Бедер. Оказалось, что в Приташкентском артезианском бассейне кислородные подземные воды проникают на глубину до 2 км. Все эти данные были обобщены на Газогидрогеохимической карте СССР, составленной под редакцией А. В. Щербакова и изданной в 1975 г. (на ней впервые показаны границы распространения свободного кислорода в подземных водах).

 

С другой стороны, на заболоченных равнинах Севера, например, в тундре и северной тайге, кислород отсутствует и в грунтовых водах.

 

В последние десятилетия было доказано, что кислородные воды на приподнятых крыльях артезианских бассейнов местами глубоко проникают в толщи восстановленных (сероцветных) пород, формируя зоны пластового окисления (ЗПО) рыжего цвета (19).

 

Большое влияние на кислородные грунтовые воды оказывает климат, и воды полярных стран отличаются от вод тропиков. Поэтому и среди грунтовых вод, вероятно, следует выделять типы, аналогичные типам почв и илов. Однако вопрос этот недостаточно ясен, и ниже сразу будут рассмотрены геохимические классы водоносных горизонтов. Что же касается пластовых водоносных горизонтов, то, хотя здесь влияние климата, по некоторым данным, сказывается до глубины в несколько тысяч метров, все же оно не столь велико. Поэтому для глубоких вод кислородный ряд можно подразделить на классы по щелочно-кис- лотным и прочим условиям. Это сернокислые, кислые, слабокислые частично нейтральные, нейтральные и слабощелочные (пресные), соленосные и содовые водоносные горизонты. Для каждого класса характерны определенные парагенные и запрещенные ассоциации элементов, а также изменения в горных породах.

 

Глеевые водоносные горизонты второго ряда.

 

Глеевые грунтовые воды широко распространены на равнинах с влажным климатом (тундра, тайга, влажные тропики) и гораздо меньше — в аридных районах. В глубоких пластовых и трещинных водах глеевая среда встречается очень часто. Особенно удачным объектом для изучения пластового оглеения оказались породы красноцветной формации, с которыми читатель уже познакомился на страницах книги.

 

В красноцветах глеевые подземные воды изменили красную окраску пород на зеленую, сизую, серую, в связи с чем былую деятельность подземных вод легко диагностировать непосредственно в поле — у обнажения, рассматривая керн буровой скважины.

 

Впервые с этими явлениями я познакомился в 1938 г. в хребте Кунгей-Алатау в Северной Киргизии. Многое тогда казалось загадочным, и в частности происхождение зеленых полос среди красных глин и песчаников. Позднее в пустынных районах Гоби (Монгольская Народная Республика) и особенно в Средней Азии на пути маршрутов постоянно встречались красные горы и обрывы, чередование красных и зеленых полос в разрезе. Мысль невольно возвращалась к загадке их происхождения.

 

Однажды при наблюдении красноцветов у меня возникло предположение, что зеленые полосы на красном фоне — это следы процессов оглеения, которое могло быть вызвано подземными водами. Сопоставляя наблюдения (пригодились и воспоминания о монгольских обнажениях Гоби), я убедился в исключительно широком развитии оглеения в красноцветной формации, в большом геохимическом значении данного процесса.

 

В красноцветах, мощность которых достигает сотен и даже тысяч метров, многократно переслаиваются песчаники и алевролиты, реже среди них встречаются прослои галечников, гравелитов, глин и известняков. Напомним, что в красный цвет эти породы окрашены окислами и гидроокислами железа, облекающими в виде тонкой пленки пылеватые, песчаные и глинистые частицы.

 

Полосы и зоны пятнистой красно-зеленой или однородной синевато-зеленой, светло-серой или белесой окраски обычно представляют собой песчаники, гравелиты, конгломераты. Мощность таких полос колеблется от нескольких десятков сантиметров до нескольких метров. Края их неровные: как правило, такие горизонты через пятнистую сизо-красную зону переходят в преобладающие красные породы.

 

Ранее некоторые ученые полагали, что при осадкообразовании в условиях восстановительной среды откладывались зеленоватые (серые, сизые) пески, а в условиях окислительной — красные алевролиты. Нетрудно убедиться, что при осадкообразовании возникли бы обратные соотношения — пески, откладывающиеся из быстротекущих и, следовательно, богатых кислородом вод, имели бы красно-бурую окраску, а алевролиты и глины, осаждающиеся в более застойных условиях, — зеленоватую, сизую и т. д. Однако это противоречие не привлекало должного внимания.

 

Изучая сизые, зеленоватые и белесые горизонты и слои красноцветов, я пришел к выводу, что они представляют собой былые водоносные горизонты, окраска которых изначально была красной. Подземные воды, естественно, двигались по более проницаемым горизонтам — пескам и гравелитам, а также по трещиноватым известнякам. Если воды залегали глубоко, то они могли не содержать свободного кислорода и восстанавливать соединения железа, т. е. переводить Fe3+ в Fe2+. В результате соединения Fe3+ восстанавливались и переходили в раствор, мигрируя вместе с подземными водами. Частицы пород, лишаясь «железистой рубашки», приобретали светло-серую, белую, сизую или зеленоватую окраску. Иногда железо только переходило из одной формы в другую, не мигрируя. При этом красная окраска заменялась зеленой.

 

Глины и алевролиты, примыкающие к водоносному горизонту вследствие капиллярного впитывания, также содержали воду, и в них развивались восстановительные процессы. В результате и эти слои приобретали сизо- зеленую или пятнистую окраску, которая распространялась на десятки сантиметров от контакта глины с песками.

 

Геохимическая деятельность подземных вод местами была столь интенсивной, а число водоносных горизонтов столь велико, что породы красноцветной формации чрезвычайно сильно изменились: почти все «пленочноо» железо было перераспределено. Лишь средние части алевро- литовых и глинистых горизонтов сохранили свою первоначальную окраску, местами она проявлена только в форме пятен. Породы в таких районах приобрели пеструю окраску, создающую впечатление хаоса красных, белых, охристо-ржавых полос и пятен. И только внимательное рассмотрение позволяет установить строгую закономерность в распределении окраски: чередование в разрезе былых водоносных и водоупорных горизонтов. Подобные породы нередко именуются пестроцветными. Следовательно, некоторые пестроцветы образовались из крас- ноцветов в результате их переработки подземными водами (20).

 

Оглеение пермских красноцветов установлено автором и Е. Н. Борисенко во многих районах Приуралья и Заволжья: в Татарской, Удмуртской и Башкирской АССР, Пермской и Оренбургской областях. Широко распространены эти явления в меловых и палеогеновых красно- цветах Средней Азии. Это преимущественно карбонатное, но местами также содовое оглеение. Возможны и другие классы. Е. И. Борисенко доказала, что при карбонатном оглеении краспоцветов мигрируют медь, свинец и другие рудные элементы.

 

Оглеение под воздействием подземных вод было широко распространено в прошлые геологические эпохи, многочисленные его следы обнаружены и в других формациях — меловых песках Подмосковья (Клинско-Дмитровская гряда и др.), Средне-Русской возвышенности (район Курской магнитной аномалии), Окско-Донской низменности и т. д. Сильно оглеены плиоценовые и миоценовые пески Молдавии, олигоценовые пески Приташкентского района, породы юрской угленосной формации Средней Азии и Забайкалья.

 

Глеевые водоносные горизонты характерны также для участков нефтяных и газовых залежей (в водах много органических веществ — пищи для микробов, работающих энергично). Особо благоприятные условия для деятельности микробов создаются на водонефтяных контактах, где микроорганизмы, окисляя органическое вещество нефти, продуцируют С02, органические кислоты . В результате на контакте рН вод понижается и карбонаты водо- вмещающих пород растворяются по известной схеме (кислый глеевый класс)

 

Гидрокарбонатные растворы, содержащие повышенное количество Са2+, Mg2+, Fe2+, Мп2+, мигрируют в сторону от водонефтяного контакта, где в водоносных горизонтах микробиологическая деятельность развивается слабее и рН выше. В результате происходит осаждение вторичных эпигенетических карбонатов, цементирующих пласт. Эти явления были описаны на нефтяных месторождениях Среднего Поволжья, Кубани, Средней Азии.

 

Новые интересные данные доставило изучение нефтегазоносных бассейнов Сибири. Б. А. Лебедев, А. А. Ро- зин, 3. Я. Сердюк и др. установили широкое распространение в Западной Сибири эпигенетической каолинизации и карбонатизации. Так, в Межовском районе в юрских отложениях на глубине 2500 м полевые шпаты, слюды, хлориты превращены в каолинит. Здесь же развиваются и вторичные карбонаты. Эпигенетические изменения носят «игольчатый» характер, часто они приурочены к зонам разломов. Аналогичные явления установлены в районе Шаима, Сургута, Чебачья, Мельджино. Изменения происходили в восстановительных условиях, так как среди вторичных карбонатов присутствует не только кальцит, но и сидерит, анкерит. Следовательно, железо мигрировало и среда была глеевой. Каолинизация возможна только в кислой среде, а осаждение карбонатов — в нейтральной и щелочной. Это однозначно решает вопрос о последовательности процессов — сперва кислая глеевая каолинизация, потом окарбоначивание каолинизи- рованных горизонтов.

 

Р. В. Королева и Б. А. Лебедев описали подобную кислотно-щелочную зональность в триасовых песчаниках Лено-Вилюйской нефтеносной области.

 

Как и в Западной Сибири, вторичные минералы представлены кальцитом, анкеритом и сидеритом, что указывает на глеевый характер вод. Эпигенетическая каолинизация в нефтеносных породах известна также в Предкавказье, Мангышлаке, Волго-Уральской области, При- балханском районе, во многих районах США, Северной Африки. С этим процессом связано формирование коллекторов для нефти и газа, так как при каолинизации пористость песчаников увеличивается. В карбонатных породах коллекторы образуются за счет растворения СаС03 под влиянием углекислых вод. Вторичные карбонаты откладываются по периферии коллекторов, т. е. и здесь имеет место щелочно-кислотная зональность.

 

Хотя причины кислотно-щелочной глеевой зональности в осадочных породах трактуются по-разному, в геохимическом аспекте главным виновником является один элемент — углерод, точнее, углекислый газ.

 

Одним из универсальных источников углекислого газа служит окисление микробами органических веществ битумного (нефтяного) или угольного ряда. Эти процессы протекают везде, где имеются вода и органическое вещество и температура не слишком высока. Естественно, что наиболее энергично они развиваются в местах скопления органического вещества, например на водонефтяных контактах.

 

Вторым источником углекислого газа служит разложение карбонатов. Термическая диссоциация СаС03 требует многих сотен градусов и может развиваться лишь в зонах магматизма и метаморфизма. Такой метаморфо- генный и магматогенный углекислый газ мог играть роль в рассматриваемых процессах, однако доказать его участие довольно трудно.

 

В процессах кислого глеевого выщелачивания и каолинизации, вероятно, определенную роль играют органические кислоты, весьма характерные для вод, связанных с нефтяными месторождениями.

 

Водоносные горизонты сероводородного (сульфидного), третьего ряда.

 

Одним из источников сероводорода служит десульфуризация. Именно поэтому «нефтяные воды» часто являются бессульфатными. Однако биохимическое образование сероводорода за счет восстановления сульфатов характерно для более высоких горизонтов нефтяных и газовых месторождений. Вместе с тем содержание сероводорода в нефтяных газах во многих районах возрастает с глубиной, что указывает на другой источник его. Такой глубинный сероводород был обнаружен в больших количествах на многих газовых месторождениях. Он представляет большой интерес как серное сырье: в СССР —в Оренбургской области, в США (в Техасе некоторые газы содержат до 80—97% сероводорода), Канаде, Франции, ФРГ. Сероводород поступает с больших глубин, где господствует выс жая температура и невозможна десульфу- ризация. JI. А. Анисимов предполагает, что этот газ образовался в результате термокаталитического разложения сернистых нефтей и других сероорганических соединений.

  

Сероводородные (сульфидные) водоносные горизонты формируются также и вне нефтегазоносных провинций — везде, где в подземных водах много сульфатов, есть органическое вещество и нет свободного кислорода. Нередко такие воды имеют важное бальнеологическое значение, к районам их распространения приурочены курорты типа Мацесты, Пятигорска и др.

 

Былые водоносные горизонты третьего ряда легко диагностируются по окраске — часто они имеют серый или черный цвет за счет тонкорассеянного пирита (21). К таким горизонтам приурочены рудные тела сульфидных месторождений, особенно медных (некоторые «медистые песчаники»). Преобладает здесь нейтральный карбонатный сульфидный класс, хотя известны и соленосио-суль- фидные и содовые сероводородные водоносные горизонты.

 

Геохимические классы грунтовых вод СССР. Еще в начале XX в. П. В. Отоцкий показал, что грунтовые воды подчиняются зональности. Эти представления в конце 20-х годов подробно развил В. С. Ильин. Ныне горизонтальная зональность грунтовых вод изучена очень хорошо (О. К. Ланге, Г. Н. Каменский, И. В. Гарманов и др.).

 

 

 

К содержанию книги: Биокосные системы Земли

 

 

Последние добавления:

 

БИОЛОГИЯ ПОЧВ

 

Вильямс. Травопольная система земледелия

 

История русского почвоведения

 

Качинский - Жизнь и свойства почвы

 

Вернадский - ЖИВОЕ ВЕЩЕСТВО