ГЕОЛОГИЯ. Земля и земная кора

 

 

СОСТАВ И СОСТОЯНИЕ ВЕЩЕСТВА МАНТИИ И ЯДРА ЗЕМЛИ. Литосфера, астеносфера и тектоносфера

 

Более или менее достоверные данные, хотя и косвенные, имеются лишь для верхней части мантии в слое В.

К ним относятся: 1) выходы в отдельных местах на поверхность интрузивных магматических ультраосновных горных пород, главным образом перидотитов; 2) состав пород, заполняющих алмазоносные трубки, где наряду с перидотитами, содержащими гранаты, встречаются включения высокометаморфизованных пород, называемых эклогитами, близкими по составу основной глубинной магматической породе габбро, но отличающимися от нее значительной плотностью (3,35-4,2 г/см3).

Последнее свидетельствует о том, что они могли формироваться только при больших давлениях. По данным петрологов (А.А. Маракушева и др.), алмазоносные породы образуются в ходе сложной и длительной эволюции магмы, кристаллизация которой начиналась в глубинных мантийных очагах (около 150-200 км), продолжалась и завершалась при внедрении их в земную кору. Алмаз формируется на наиболее ранней стадии магматической кристаллизации.

Таким образом, по данным непосредственного изучения интрузивных тел, пород, заполняющих алмазоносные трубки, а также экспериментальных исследований, принимается, что слой В верхней мантии состоит главным образом из ультраосновных пород типа перидотитов с гранатом. Такую мантийную породу А. Е. Рингвуд в 1962 г. назвал пиролитом (по корням названных минералов) или пироксеново-оливиновой.

Встречающиеся в алмазоносных трубках включения эклогитов, по-видимому, имеют подчиненное значение и захвачены в процессе взрыва. По данным В. Н. Жаркова, основанным на петрохимических исследованиях, вещество пиролитового состава до глубин 350-400 км должно кристаллизоваться в форме минеральной ассоциации, содержащей в определенных соотношениях оливин, пироксен и гранат.

При этом устойчивая минеральная ассоциация пиролитового состава в процентах выглядит следующим образом: оливин - 57, ортопироксен - 17, клинопироксен - 12, гранаты - 14. В этих минералах кремний находится в четверной координации, а магний, железо и кальций - в шестерной и восьмерной. Молекулярное отношение Fe/(Fe+Mg) в пиролите составляет 11%.

соотношение литосферы, астеносферы и тектоносферы

Рис. 3.4. Схема соотношения литосферы, астеносферы и тектоносферы.

Каково же состояние вещества в слое В верхней мантии? Непосредственно ниже границы Мохо располагается высокоскоростной твердый слой верхней мантии, распространяющийся до различных глубин под океанами и континентами, который совместно с земной корой называют литосферой. Ниже литосферы отмечается слой, в котором наблюдается некоторое уменьшение скорости распространения сейсмических волн (особенно поперечных), что свидетельствует о своеобразном состоянии вещества. Этот слой менее вязкий, более пластичный по отношению к выше и ниже расположенным слоям, называют астеносферой (греч. "астенос" - слабый) или волноводом (). Именно с этим слоем связывают горизонтальные движения литосферных плит. С чем же связано снижение скорости сейсмических волн в астеносферном слое?

По-видимому, под влиянием нарастания температуры часть мантийного вещества (около 1%) плавится, возможно, образуются жидкие пленки вокруг твердых зерен породы или просто капли жидкости, в результате уменьшается вязкость. Глубина залегания астеносферного слоя неодинакова под океанами и континентами. Длительное время считалось, что под океанами она располагается на глубинах 50-60 км, а под континентами - 80-100 км и имеет мощность 250 км.

Широкие всесторонние исследования последних десятилетий указывают на более сложную картину распространения астеносферы. Обнаружено, что под рифтами срединно-океанских хребтов астеносферный слой местами находится на глубине 2-3 км от поверхности дна (Восточно-Тихоокеанское поднятие).

Особенно много отклонений от прежних данных получено под устойчивыми участками платформ, называемых щитами, где древние кристаллические породы выходят непосредственно на поверхность (Балтийский, Украинский и др.). В их пределах сейсмическими исследованиями не обнаружена астеносфера до глубин 200-250 км. Основываясь на этих и дополнительных данных, полученных за последнее время, некоторые исследователи высказывают мысль о прерывности астеносферного слоя, о наличии лишь отдельных астенолинз. Однако есть косвенные указания о наличии астеносферы и под щитами платформ. Об этом свидетельствует явление изостазии (греч. "изос" - равный, одинаковый, "стасио" - состояние) - состояние равновесия масс земной коры и мантии. Так, например, известно, что Канадский и Балтийский древние щиты платформы подвергались мощным четвертичным оледенениям. Под влиянием ледниковой нагрузки эти части континентов прогибались, как это наблюдается сейчас в Антарктиде и Гренландии. После таяния ледников и снятия нагрузки за относительно небольшой срок произошел быстрый подъем - выравнивание нарушенного равновесия.

Почему же нет достаточных сейсмических доказательств существования астеносферы под щитами? По данным В.Е. Хаина, причина кажущегося отсутствия астеносферы под щитами связана с ее залеганием глубже 200-250 км и увеличением вязкости в сравнении с вязкостью в этом слое под океанами и горными сооружениями, что и вызывает большие трудности обнаружения ее существующими методами. За последние годы получены данные о вертикальной неоднородности, или расслоенности, астеносферы. Глубина распространения подошвы астеносферы оценивается неоднозначно. Ряд исследователей считают, что она может опускаться местами до глубин 300-400 км, т.е. до основания слоя В верхней мантии. Другие считают, что она захватывает и некоторую часть слоя С. Учитывая эндогенную активность литосферы и верхней мантии, введено обобщающее понятие тектоносферы (). Это понятие объединяет земную кору и верхнюю мантию до глубин около 700 км (где зафиксированы наиболее глубокие очаги землетрясений).

Каковы же состояние и состав вещества в более глубоких частях мантии, слоях С и D? Высказывается предположение о том, что с ростом давления и температуры происходит переход вещества в более плотные модификации. На глубинах более 400(500) км оливин и другие минералы при существующих давлениях претерпевают фазовый переход и приобретают структуру шпинелей, в которой большие ионы кислорода перестраиваются, образуя структуру, близкую к кубической гранецентрированной, соответствующей плотнейшей упаковке, а остальные ионы (Si2+, Mg2+, Fe2+ Fe3+ и др.) располагаются между ними. В результате плотность шпинелевой модификации возрастает на 11% по отношению к оливиновой.

Такой переход подтверждается экспериментальными исследованиями. По данным А. Алиссона, в лабораторных опытах при давлении, соответствующем глубине 500 км, оливин приобретает более плотную внутреннюю структуру типа шпинелевой и сокращается в объеме на 10%. При давлениях, существующих на глубинах 700-1000 км, происходит еще большее уплотнение и структура шпинели приобретает более плотную модификацию - перовскитовую (Са, ТiOз). Нижнюю мантию (слой D) называют перовскитовой. Итак, намечается последовательная смена основных минеральных фаз и плотности упаковки в них на различных глубинах - от пиролитовой (оливино-пироксеновои) фазы до глубины 400(420) км к шпинелевой до глубины 670-700 км, к перовскитовой до глубины 2900 км.

Существует и другое мнение относительно состава и состояния вещества в низах слоя С и нижней мантии. Предполагают, что в нижней мантии возможен распад железисто-магнезиальных силикатов на окислы, обладающие плотнейшей упаковкой: Аl2O3 (корунд), MgO (периклаз), Fе2O3 (гематит), ТiO2 (рутил) и SiO2 (стишовит), для которого характерны плотность 4,25 г/см3 и наличие иона в шестерной координации в отличие от четверной при нормальных условиях.

 

 

К содержанию: Н.В.Короновский, А.Ф.Якушова "Основы геологии"

 

Смотрите также:

 

Науки о Земле   Занимательная минералогия   Геохронология таблица, шкала