«Эврика» 1962. НЕИЗБЕЖНОСТЬ СТРАННОГО МИРА

 

 

Гейзенберг. Шредингер. Механика микромира

 

 

 

А Эрвин Шредингер? Один из создателей современной механики микромира, он-то уж, наверное, смотрел на квантовые переходы, как на азбуку природы?

 

«Если мы собираемся сохранить эти проклятые квантовые скачки, то я жалею, что вообще имел дело с квантовой теорией!» — так в отчаянии воскликнул Шредингер после многодневных бессонных споров с Нильсом Бором. А Бор ответил: «Зато остальные благодарны вам за это, ведь вы так много сделали для выяснения смысла квантовой теории...» Было это в сентябре 1926 года в Копенгагене, когда Бор миролюбиво пригласил так много сделавшего ученого прочитать там лекции по волновой механике. Эта волновая механика, только что разработанная Шредингером, была вариантом квантовой теории атомного мира. А рассказал об этом эпизоде Вернер Гейзенберг —• создатель другого варианта той же микромеханики, и слова об отчаянии Шредингера принадлежат именно ему.

 

Да, кстати, а как же сам Гейзенберг — один из тех, кто открыл законы, которые ленивый господь бог отказался продиктовать физикам-атомникам? Может быть, ему, Гейзенбергу, чуждо было отчаяние Шредингера?

 

В октябре 1950 года он читал доклад в собрании немецких естествоиспытателей и врачей, посвященный знаменательной дате — пятидесятилетию квантовой гипотезы Планка. Доклад был торжественный, юбилейный, когда не вспоминают огорчений, причиненных юбиляром, а одни только радости, доставленные им. Может быть, оттого, что юбиляром был не человек, а теория, Гейзенберг не удержался: он вспомнил все тот же 26-й год — нескончаемые споры в маленькой комнате на чердаке Копенгагенского института. Споры начинались вечером и затягивались далеко за полночь. Спорщики переходили с чердака в квартиру Бора и принимались глотать портвейн, потому что... Потому что для спорящих сторон «дискуссии иногда заканчивались полным orчаянием йз-за непонятности квантовой теории...»!

 

Значит, чувство отчаяния посещало и Гейзенберга и Нильса Бора? Да, даже Бора, который сам утешал Шредингера.

 

 Так что, если и нас с тобою, терпеливый читатель, охватывает такое же чувство при столкновении с идеей квантовых скачков, то, право же, не стоит впадать в уныние и раздумывать о косном несовершенстве нашего слабого разума: видишь, плод познания был горек даже для великих! Но он все-таки слаще неведения.

 

Раз уж эта главка вся в свидетельских показаниях разрушителей классики, невозможно не привести в ней прекрасные слова, сказанные в 20-х годах одним из крупнейших наших ученых, имя которого уже не раз встречалось на этих страницах, — Сергеем Ивановичем Вавиловым:

«Современному физику порою кажется, что почва усколь-* зает из-под ног и потеряна всякая опора. Головокружитель-* ное ощущение, испытываемое при этом, вероятно, схоже с тем, которое пришлось пережить астроному-староверу времен Коперника, пытавшемуся постичь неподвижность движу- щегося небесного свода и солнца. Но это неприятное ощущение — обманчиво, почва тверда под ногами физика, потому что эта почва — факты».

 

Удивительно только, что любому человеку для признания даже и бесспорных фактов нужно, чтобы они не покушались на его отстоявшиеся взгляды. Иначе и факты для нас не факты! Такова уж сила идей, в которых обобщен длительный опыт сознания.

—• А разве идея 'непрерывности понятней идеи скачка? —» сказал мне один физик, которому я надоедал разговорами о непонятности скачкообразных переходов. — Вот банка с детской мукой, на которой нарисована девочка с банкой в руках. На нарисованной банке —- снова девочка с банкой в руках, 1на которой нарисована девочка с банкой в руках. И так без конца... Это образ классической непрерывности. Так разве это понятней^ что нет последней девочки с банкой в руках, что эту волынку будто бы можно тянуть до бесконечности, уменьшая' девочку до нулевые размеров?

 

В самом деле, если всерьез задуваться, то разве это понятней? И все-таки опыт сознания восставал и восстает против реальности квантовых скачков — против непонятных провалов в непонятной непрерывности, против наименьших — но не нулевых! — уровней энергии в атоме, против прерывистости ряда разрешенных природой состояний атомной «солнечной системы». А ведь девочка на банке, каким бы тонким грифелем ее ни рисовать, не сможет стать меньше той сотни атомов углерода, какая нужна, чтобы набросать ее контуры и контуры банки. Если мы захотим сделать эту девочку еще меньше, ничего уже не выйдет — нечем будет ее рисовать, просто нечем! А классическая идея непрерывности этого предела «не чувствует». Она не признает, что есть физические границы, за которыми уже не сможет уместиться никакая девочка с банкой в руках.

 

Отчего же с этой классической идеей нам все-таки «легче жить»?

 

Классические образы в физике возникали и возникают на почве нашего «большого опыта», с изучения которого некогда началась наука. Но этот опыт —. лишь маленький участок на бесконечной шкале необъятного опыта природы. Так участочек видимого света — от красного до фиолетового — занимает лишь крошечный интервал на шкале всех возможных частот электромагнитных колебаний — от самых коротковолновых гамма-лучей до неограниченно длинных радиоволн.

По обе стороны видимого спектра есть у природы свои цвета, которых мы не различаем.

Фантазируя, можно вообразить себе гигантов, обитающих где-нибудь в глуши вселенной, которые видят радиоизлучение звезд и туманностей и с глубочайшим недоумением поглядывают в сторону нашей Земли с ее широковещательными станциями. Земля им видится единственным в своем роде источником радиорадуг над их головой. И если где-нибудь еще есть планеты или звезды с такой же высокой радиоцивилизацией, как у) нас, эти гиганты догадываются о существовании иных населенных земель тоже по их странному «радиоцвету». Какие краски существуют на палитре художников того неведомого мира радиогигантов? Гадать бессмысленно — это не наши краски.

И с таким же успехом можно вообразить себе карликов из Галактики гамма-квантов с особым, решительно не похожим на наш, физическим опытом жизни. Академики из мира радиогигантов и гамма-карликов, вероятно, очень долго не могли бы найти общего языка с нашими земными учеными. И еще труднее им было бы договориться между собой. Но в конце концов договорились бы, потому что природа едина!

 

С открытием электрона и фотона физики вторглись в мир иных масштабов и иного опыта, чем тот, в котором, веками вырабатывали люди свои представления о движении материи. Для ученых этот иной опыт, конечно, явился неожиданностью. И потому был горек плод познания.

 

Но стоит повторить, что в природе этот новый для наших физиков микроопыт равноправно располагается на естественной шкале ее неограниченного разнообразия по соседству с земным макроопытом, как невидимая область ультрафиолета- соседствует со спектром в,йдимых лучей. И природа не поставила нигде грозного пограничного знака — «оставь по ту сторону свой земной опыт, здесь начинается микромир!».

 

Оттого-то даже непоследовательная, еще наполовину классическая модель Малой вселенной атома, построенная Резерфордом и объясненная Бором, смогла принести поначалу замечательные успехи физикам. Стало ясным происхождение прерывистых спектров и открылся смысл чередования элементов в периодической системе Менделеева: элемент следовал за элементом в порядке возрастания заряда атомного ядра, а поведение семейства самых далеких от ядра — наружных — электронов объяснило химические свойства элементов. Впечатление от этих успехов было огромно.

 

«Мы ожидали работ Бора, — рассказывал сравнительно недавно Гейзенберг, вспоминая пору своего студенчества, — по меньшей мере с тем же напряжением и с таким же пылом дискутировали о них, с каким сегодня ожидаются и обсуждаются последние известия из Кореи. Будучи студентами, мы в известной мере бессознательно ощущали, что и здесь, в работах Планка, Эйнштейна и Бора, разыгрывается кусочек мировой истории — правда, без заголовков в газетах и радиосообщений, но все-таки такой эпизод мировой истории, который должен был оставить свои следы на столетия».

 

Гейзенберг имел в виду мировую историю человеческого познания. Но, право же, не случайно пришло ему в голову сравнить тот давний интерес к отвлеченным исканиям теоретиков с недавним интересом к «последним известиям из Кореи». К середине XX века от былой отвлеченности изысканий физиков-атомников не осталось и следа. Он мог бы напомнить своим слушателям, что через 30 лет после появления основополагающей идеи квантовых скачков, в 1943 году, союзники увозили Нильса Бора из оккупированной немцами Дании тайком, как величайшую «военную ценность». Его переправляли через Северное море в бомбовом отсеке боевого самолета и, как всякую военную ценность, которая не должна достаться врагу, предполагали одним движением рукоятки сбросить в море, если гитлеровские истребители окружат и поведут на посадку бомбардировщик. Могла ли Нильсу Бору — «юноше довольно хрупкого вида» — пригрезиться такая перспектива в 1913 году, когда дал он первую расшифровку квантовых законов атома! Он еще не знал, как станет звучать со временем невинное слово «атомник»!

Мировая история познания природы и просто мировая история никогда еще не переплетались столь тесно, как в нашу эпоху.

 

Начиная с 1913 года целое десятилетие совершала свое победное шествие теория Бора, хотя ее двойственность была всем ясна: вращение по орбитам уподобляло электроны в атоме классическим планетам большого мира, а квантовые скачки навсегда уводили из этого мира. И временно оправдывало такую двойственность только понимание того, что между Большой и Малой вселенными нет и не может быть пропасти.

 

...Представьте себе высоченную лестницу, но такую, что ступеньки ее становятся с высотой все ниже. Тогда — чем дальше вверх, тем они делаются неразличимее, а лестница менее крутой. Постепенно она превращается в пологий пандус— гладкий въезд, какие бывают под театральными колоннадами. И вот сверху катится мячик. Сначала на ровном спуске он непрерывно меняет свою скорость, не замечая слившихся воедино ступенек. Но потом начинаются вынужденные перескоки со ступеньки на ступеньку—сперва едва заметные, затем ©се более резкие, оттого что ступеньки делаются все круче. Повиснуть меж ступенек мячик не может—это ясно.

 

Разрешенные природой уровни энергии в атоме — такая лестница. И в положение мячика попадает свободный электрон, когда из большого мира он переходит в малое атомное пространство. А встречи вольных электронов с «обломками» атомов — с ионами или голыми ядрами — происходят всюду*, в воздухе, в камере Вильсона, в любом веществе. Электрон попадает под власть ядерного притяжения, и непрерывная смена состояний по классическим законам постепенно переходит в смену состояний по законам квантовым — в скачки по лестнице, которая перестает быть пологим пандусом. И наоборот, когда электрон покидает атом, скачки со ступеньки одного разрешенного уровня энергии на ступеньку другого уровня постепенно превращаются для электрона в непрерывный подъем по гладкому пандусу слившихся ступенек. Из- под власти квантовых законов электрон незаметно въезжает во власть законов классики.

(Так дубенекий протон, постепенно наращивая скорость, неприметно въезжает в область, где начинают явственно чувствоваться законы теории относительности, а область, где еще справедливы законы Ньютона, остается позади.)

 

Такую постепенность перехода от микромира к большому миру Нильс Бор назвал принципом соответствия. Этот принцип яснее ясного показывает, какой глубокий и непростой физический смысл таится за нашей простой и столь же глубокой убежденностью, что природа едина.

 

И не нужно искать объяснения, почему в естествознании извечно сопутствуют друг другу два ряда прямо противоположных событий: с одной стороны—ветвление наук, а с другой— их слияние. Все подробней становится знание — оттого и ветвятся науки. Но все наглядней делается единство природы—оттого и слияние. В наши дни наглядней, чем когда-либо прежде. Астрономы занимаются радиохимией, потому что период полураспада одной из разновидностей зауранового элемента — калифорния — возбуждает надежду понять важные явления, происходящие в космосе... Физики-теоретики изучают биологические проблемы наследственности: так, этими проблемами увлечен сейчас Игорь Евгеньевич Тамм, <— потому что проникновение современной науки о микромире в область генов и хромосом обещает решение вечной загадки передачи наследственных признаков из поколения в поколение... Наш химик Н. Эмануэль читает в Институте физических проблем на семинаре академика Капицы доклад о попытках найти новые методы изучения рака, потому что законы цепных химических реакций «неожиданно» позволяют проникнуть хотя бы в некоторые закономерности роста и подавления злокачественных опухолей. Метеоритчики обращаются к сейсмологам, химикам, специалистам по ядерным взрывам за помощью в раскрытии старой тайны Тунгусского метеорита, потому что... Да все потому, что природа едина!

 

И какое скучное непонимание природы скрыто за чиновничьей обороной иных из наших биологов, которые безнадежно противятся благому вторжению современной физики в их науку! И скучнее всего, что эти домашние натурфилософы, о которых мы уже вспоминали, основывают свою оборону на пустой убежденности, будто биологические законы недоступны анализу никаких других наук. Они верят, что защищают при этом диалектический материализм. Но неужто можно еще думать в XX веке, что изучение процессов жизни мыслимо без тех тонких знаний, какие добывает наука, все успешней углубляющаяся в самые первоосновы материи? Или жизнь это и вправду чудо, а не порождение общих закономерностей природы?! Физика не может увести биологию «не туда»—она может только привести ее к началу начал: к той природной микролаборатории, где неживая материя порождала и порождает жизнь. «Я уверен, что конкретное понимание физико-химических процессов в организме в наибольшей степени будет способствовать установлению истинной природы... биологических закономерностей...» — сказал недавно академик Н. Н. Семенов. И показал, что об этом провидчески думал в свое время еще Энгельс.

 

В сущности, разве нельзя посмотреть на дело так, что каждая наука—только свод особых законов природы, открытых средствами именно этой науки? Но у природы есть еще и всеобщее законодательство, и не только философское, а и физическое, конечно, равно обязательное для всех. Из него-то и вытекают параграфы астрономического, химического, биологического и прочих особых кодексов в естествознании. И представьте, что ученым удается нащупать в своей частной области прежде неведомые проявления этих всеобщих законодательных установлений природы. Тогда разве не должны начинаться длительные революции в научных взглядах на мир? И разве не должны эти революции захватывать постепенно все области естествознания?

 

Квантовые скачки — из числа таких всеобщих законодательных установлений природы, открытых микрофизиками. И понятно, почему революция, начатая в нашем веке электронами и фотонами, продолжается по сегодня, не затихая: ей еще предстоит преобразить все природоведение.

 

 

К содержанию книги: Научно-художественная книга о физике и физиках

 

 Смотрите также:

  

Физика. энциклопедия по физике

Книга содержит сведения о жизни и деятельности ученых, внесших значительный вклад в развитие науки.
О физике

заниматься физикой как наукой или физикой, которая...

Эта книга адресована всем, кто интересуется физикой. В наше время знание основ физики необходимо каждому, чтобы иметь правильное представление об окружающем мире

Энциклопедический словарь

И старшего. Школьного возраста. 2-е издание исправленное и дополненное. В этой книге  Гиндикин С. Г. Рассказы о физиках и математиках

 

И. Г. Бехер. книга Бехера Подземная физика

В 1667 г. появилась книга И. Бехера «Подземная физика», в которой нашли отражение идеи автора о составных первоначалах сложных тел.

 

Последние добавления:

 

Право в медицине      Рыбаков. Русская история     Криминалист   ГПК РФ