«Эврика» 1962. НЕИЗБЕЖНОСТЬ СТРАННОГО МИРА

 

 

Волновое уравнение Шрёдингера, матричная механика Гейзенберга

 

 

 

Уже видно: ищущая мысль теоретиков могла двигаться вперед двумя разными путями. Прерывность и непрерывность... Частицы и волны... Для нашего скромного воображения Это две разные стихии. Но и для физических построений тоже. А для математических описаний тем более. В эти-то две разные стихии и окунулись два теоретика, создавшие в середине 20-х годов две механики микромира.

 

Их имена одновременно стали равно знаменитыми. Мы их уже встречали недавно: Вернер Гейзенберг и Эрвин Шредингер.

 

Кажется, до 1926 года они даже не были знакомы друг с другом. Работали в разных городах, занимали далеко не одинаковое положение в науке, принадлежали к разным поколениям: один родился в прошлом веке, другой — в нынешнем. Словом, внешне ничто не связывало почти сорокалетнего, уже имевшего собственных учеников цюрихского профессора Шредингеда и ассистента при кафедре физики, которому- не было и двадцати пяти, начинающего геттинген- ского ученого Гейзенберга. Вы ожидаете, что зато между ними существовала глубокая внутренняя связь, раз оба явились создателями механики микромира. Однако и это не так.

 

Они не только работали врозь и независимо друг от друга, но и питали разные надежды. Им рисовались совсем несхожие между собой картины микродействительности. Они одновременно делали одно великое дело. Не сговариваясь, они были соратниками по цели. Но оказалось, что они противники по убеждениям—по физическим взглядам на природу атомных явлений. Вот уже более тридцати пяти лет их имена стоят неизменно рядом на страницах «трактатов по квантовой механике». И ровно столько же лет продолжался   то явный, то скрытый спор между ними.

 

Как бы его обнажить и сделать понятным?

 

Грубо, конечно, но все же не настолько грубо, чтобы от истинной сути дела ничего не осталось, можно так передать смысл их начальных исканий: оба надеялись построить микромеханику, на разные лады разоблачив странную двойственность волн-корпускул или корпускул-волн. В сущности, каждый из них со своей точки зрения хотел показать, что у элементарных частиц только одно лицо подлинное, а другое — маска. Одно соответствует их материальному естеству, а другое — лишь отражает характер их сложного поведения.

 

Говоря уже совсем не грубо, а только образно, события в атомном мире представлялись обоим физикам как бы карнавалом, на котором либо частицы надевают личину волн, либо волны выступают под маской частиц. Был выбор: рисовать себе дело так или этак. Был выбор: отдать предпочтение волнам или отдать предпочтение частицам.

 

Когда сегодня студенты решают практические задачи по квантовой механике, они с легкостью делают этот выбор, думая только об удобстве рассуждений и об упрощении математических выкладок. А принципиально для них вообще не существенна эта проблема — что предпочесть: они уже знают, что и так и этак получится одинаково хорошо. В первой же лекции они узнали и на всю жизнь усвоили, что симметрия волн-частиц в микромире полная! Но пусть не покажется, что и цервосоздатели микромеханики могли решать для себя этот вопрос беззаботной жеребьевкой: кинули моцету, посмотрели — «оред» или «рещка», сказали: «Так тому и быть». И не стоит думать также, что каждый из них сделал свой выбор по трезвому расчету: осмотрелся, прикинул трудности, решил: «Так будет лучще!» Один рещил: «Буду рассматривать частицы, держа р уме волны». Другой рещил: «Буду рассматривать волны, держа в уме частицы».

 

Тут работала интуиция. В ту начальную пору выбор между волнами и частицами затрагивал глубины физического мировоззрения. Он определялся складом мышления и души. Тут боролись под спудом XIX и XX века в естествознании. Это да преувеличение.

«Волны материи»! В их смутном еще образе оживала надежда вернуться к старой, испытанной непрерывности движения в природе.

 

Частицы и квантовые скачки! В их образе, тоже отнюдь не ясном для воображения, подчеркнуто утверждала себя чуждая старой картине природы прерывистость процессов в микромире.

 

Надо бы подробно проследить все извивы ранней научной биографии обоих ученых, чтобы безошибочно объяснить, почему Шредингер стал работать под девизом — «Волны и непрерывность!», а Гейзенберг под девизом — «Прерывность и частицы!». Но нам, пожалуй, довольно заметить, что цюрихский профессор был на четырнадцать лет старше и, следовательно, геттингенский ассистент был на четырнадцать лет моложе... Оба шли вперед, но Шредингер оглядывался на классические представления о непрерывном течении физических процессов, а Гейзенберг готов был к любой новизне, самой диковинной.

 

Из таких-то разных устремлений родились в 1925— 1926 годах две разные механики микрособытий. Это не домысел. Есть верное свидетельство выдающегося теоретика Макса Борна (его имя уже попалось однажды на нашем пути), что дело обстояло именно так, а не иначе.

 

Каковы же были две эти механики? Здесь об их премудростях можно сказать только два слова, но нам этого и достаточно.

 

Гейзенберг раздумывал о прерывистом ряде устойчивых состояний атома, о правилах движения по боровской лестнице квантовых скачков. Его не смущала полная невозможность ни вообразить, ни описать, как протекает каждый такой скачок. Он видел: они реальны, эти скачки! И был убежден, что пытаться раскрыть их механизм — бесцельно: внутренне они не членятся на более мелкие события. А если как-то и членятся, то физически это не обнаруживается: скачок сопровождается испусканием целого кванта. Или поглощением, когда энергия приходит извне.

 

Уже шла речь о том, какая большая неприятность для нашего сознания эти квантовые скачки. Прежде природа нигде и никогда не демонстрировала настоящей прерывности в ходе физических процессов. Но достаточное ли это основание для того, чтобы пытаться любой ценой очистить от квантовых скачков картину внутриатомной жизни?! Прерывность— подлинное лицо многих событий в микромире. Так думал Гейзенберг. Волнообразность микрочастиц он считал маской. И вначале надеялся вообще от нее избавиться.

 

Он хотел проникнуть в математические закономерности, по которым одни квантовые переходы -в атомах осуществляются чаще, другие — реже. 0,н искал способ предсказывать вероятности всех возможных скачков с уровня на уровень. Тогда можно было бы ответить на вопрос, почему в спектре натрия так ярко горит именно желтая линия, а в атомах возбужденного стронция чаще всего происходит скачок с испусканием кванта красного света.

 

Тогда вообще можно было бы математически описывать поведение квантовых систем из микрочастиц.

 

Он был в ту пору ассистентом Макса Борна — «очень талантливым, но еще очень молодым и не очень образованным» (так писал Борн). Можно добавить: настолько талантливым и настолько необразованным, что он сам придумал для своих физических идей особый математический аппарат, не зная, что такой аппарат под именем «матричного исчисления» давно придуман математиками. (О домашнем изобретателе изобретенного говорят — «он придумывает велосипед». Согласитесь, что к случаю с Гейзенбергом эта шутка не очень подходит.)

 

А тем временем Шредингер в Цюрихе продолжал де Бройля. Но не просто продолжал: он намеревался так разработать идею «волн материи», чтобы ничего не осталось от корпускул яр ности элементарных частиц и от прерывистости атомных состояний. Другими словами, ему хотелось показать, что непрерывность нерушима и в микропроцессах, а прерывистый ряд разрешенных уровней энергии в атомах — только маска: за нею прячутся закономерности поведения непрерывных волн, которые могут гасить или усиливать друг друга. Тут лежала в подоплеке та же мысль, что помогла де Бройлю объяснить волновыми свойствами электрона, почему раздвинуты и образуют прерывистый ряд боровские разрешенные орбиты в атоме: поведение электронной волны отражало состояние движения электрона-частицы.

 

Но Шредингер пошел гораздо дальше. Он был глубоко убежден, что все события в микромире — это волновые процессы, и только волновые процессы!

 

Он вывел знаменитое волновое уравнение, опираясь на классическую (теорию волновых явлений и основную идею де Бройля. Это уравнение давало закон изменения во времени и пространстве неких волн, или, как чаще говорят физики, волновых функций. С их помощью можно было математически описывать разные состояния атома и смену этих состояний, влияние разных условий на движение микрокентавров.

 

Когда весною 1926 года Шредингер прислал из Цюриха в Париж де Бройлю рукопись своих работ, автор «вздорной, но изящной» диссертации испытал, как он сам признается, чувство восторженного удивления: его поразила красота построений Шредингера, и он увидел, какое глубокое и неожиданное завершение получили вдруг его первоначальные волновые идеи. Он даже назвал их теперь «примитивными». Но, конечно, то была «примитивность» зерна, из которого со временем вырастает колос.

 

Математики давно оккупировали для своих символов весь греческий и весь латинский алфавиты. Свободных букв совсем уже не было, когда появились волновые функции Шредингера. Он назвал их сравнительно мало «затасканной» буквой «пси». С тех пор это греческое название для шредин- геровских волн стало едва ли не самым частым гостем на страницах всех теоретических исследований по микрофизике. С ним могло соревноваться в популярности только еще одно слово — «матрица», перекочевавшее из высшей алгебры в теорию микромира благодаря Гейзенбергу.

 

Холодом бесстрастной научности веет от математической вязи нескончаемых операций с пси-функциями и матрицами. Какой-нибудь не очень научный фантаст когда-нибудь еще скажет, что это, может быть, шифр, забытый на земле марсианами. Так пугающе неприступна, так безлична, так не похожа на живой, беспокойный человеческий язык 3ta символическая канитель интернационального словаря атомников. Но

 

рождался этот словарь не в бесстрастных трудах затворников, а в бурных спорах, в часы бессонниц — не фигуральных, а подлинных, — в приступах негодования и даже, как мы помним, в часы отчаяния.

 

Так было с самого начала. Макс Борн уверяет, что Шредингер весь отдался разработке своей волновой механики из- за «отвращения к боровским внезапным квантовым скачкам». (Вы не забыли, как цюрихский профессор называл эти скачки «проклятыми» и кричал, что будет жалеть о своей возне с квантовой теорией, если придется сохранить прерывность в картине микромира!) И тогда, и позже, и совсем недавно Шредингер, по словам Макса Борна, «страстно призывал к изгнанию из физики...». Кого? Нет, не надо ждать здесь перечисления каких-нибудь неугодных имен — настоящие ученые борются с идеями, а не с их носителями. Шредингер призывал к изгнанию из физики всяких представлений о частицах, о разрешенных устойчивых состояниях и квантовых переходах между ними. Вот кто были его «личные враги».

 

А матричная механика Гейзенберга как раз на эти-то представления и опиралась. Мог ли геттингенский ассистент оставаться равнодушным? Нет, и он был настроен резко непримиримо. Нужен был только повод, чтобы эта непримиримость прорвалась наружу. Повод нашелся. Когда появилась волновая механика, Макс Борн стал размышлять над простейшим, но и самым трудным вопросом: а что такое эти шредингеровские пси-волны? Каков их физический смысл? Понимаете, он не отверг их, как того хотелось бы его молодому ассистенту, а увидел и в волновых построениях то, что Эйнштейн называл «краешком истины». Этого оказалось достаточно, чтобы между учеником и учителем впервые возникло принципиальное несогласие. Со всем азартом своих двадцати пяти лет Гейзенберг обвинил Борна «в измене духу матричной механики». В измене — не меньше!

Таковы были страсти — односторонние страсти.

 

Они-то и помогают нам теперь кое-что уловить в самой сути новой, рождавшейся тогда, а сегодня еще не состарившейся странной картины микродействительности.

 

Итак, физики ссорились втайне. Их построения соперничали явно. А природа — неужели она безмолвствовала?

 

 

К содержанию книги: Научно-художественная книга о физике и физиках

 

 Смотрите также:

  

Физика. энциклопедия по физике

Книга содержит сведения о жизни и деятельности ученых, внесших значительный вклад в развитие науки.
О физике

заниматься физикой как наукой или физикой, которая...

Эта книга адресована всем, кто интересуется физикой. В наше время знание основ физики необходимо каждому, чтобы иметь правильное представление об окружающем мире

Энциклопедический словарь

И старшего. Школьного возраста. 2-е издание исправленное и дополненное. В этой книге  Гиндикин С. Г. Рассказы о физиках и математиках

 

И. Г. Бехер. книга Бехера Подземная физика

В 1667 г. появилась книга И. Бехера «Подземная физика», в которой нашли отражение идеи автора о составных первоначалах сложных тел.

 

Последние добавления:

 

Право в медицине      Рыбаков. Русская история     Криминалист   ГПК РФ