Ионизация - нейтральные атомы превращаются в электрически заряженные ионы

 

«Эврика» 1962. НЕИЗБЕЖНОСТЬ СТРАННОГО МИРА

 

 

Ионизация

 

 

 

Как обычно, все началось с простых вопросов.

 

Есть физические понятия, без расшифровки которых так Же невозможно обойтись в рассказу об элементарных частицах, как, скажем, в разговоре об актерах без слова «сцена». Ионизация — одно из таких понятий. Это и впрямь та лабораторная сцена, на которой показываются из-за кулис и демон^ стрируют свои способности элементарные частицы. Не будь этого процесса — ионизации, ученые вряд ли хоть что-нибудь узнали бы об элементарных частицах.

 

Щелкающие счетчики в атомных институтах... Фотографии туманных следов в знаменитой камере Вильсона... Радиосигналы физических приборов на спутниках... Все это работает ионизация.

 

Наше минутное предположение, что процесса ионизации вдруг могло бы не быть, на редкость бессмысленно. Это все равно, что предположить на минуту, будто не существует самой окружающей нас природы, да и нас самих тоже. Мир без ионизации — это мир навсегда запечатанных атомов, между которыми почти невозможны взаимодействия, мир без подавляющего большинства химических превращений, без необходимого для живой жизни великого разнообразия сложных веществ. Бесплодный, невообразимый мир.

 

Очень давно уже было замечено, что нейтральные атомы легко превращаются в электрически заряженные ионы. Только физики не понимали, как это происходит. Фарадей, который в 30-х годах прошлого века ввел в науку это греческое слово «ион» — «странник», или «идущий», — не располагал никакими сведениями о строении атомов. А в их строении и было все дело. Они нейтральны, хотя и построены из заряженных частиц, потому что число минус-зарядов—электродов, вращающихся в атоме вокруг ядра, в точности равно числу плюс-зарядов — протонов в самом ядре.

 

Нужно только нарушить это равенство, чтобы атом тотчас превратился в заряженный ион. И на первый взгляд есть целых четыре способа сделать это: первые два — увеличить или уменьшить число протонов в ядре, другие два — уменьшить или увеличить число наружных электронов.

 

Но первые два способа не годятся. Совершенно не годятся! И не потому, что это очень трудная задача — выбить из ядра протоны или вогнать туда новые, а потому, что такая операция равносильна утрате самого атома, который нам хотелось бы превратить в ион.

 

Атомы разных химических элементов прежде всего тем и отличаются друг от друга, что в их ядрах заключены разные количества протонов. Есть три водорода: обыкновенный — протий, тяжелый — дейтерий, сверхтяжелый — тритий. Но все это — разновидности (изотопы) одного и того же химического элемента, потому что их ядра, содержащие только по одному протону, все имеют один и тот же заряд: + 1.

 

Изменить число протонов в ядре — это все равно, что превратить один элемент в другой!

А ионизация — процесс гораздо более скромный и гораздо более легкий: ионизированный водород остается водородом оо всеми своими основными свойствами, гелий — гелием, а уран — ураном. Но если с атомными ядрами при ионизации не происходит решительно ничего, то, значит, что-то происходит с наружными электронами атомов?

 

Так остаются только два последних способа сделать атом заряженным: либо отодрать от его внешней оболочки один или несколько электронов, либо, напротив, присоединить еще новые. Другими словами: или хотя бы немного рассеять электронное облако, или сгустить.

Заметьте, какие глаголы приходится употреблять в разговоре об ионизации: «отодрать», «удалить», «присоединить»» «сгустить»... Это все активные действия. При их совершении ^происходит либо затрата энергии, либо ее выделение.

 

Если бы ионизация давалась даром, это было бы также безрадостно, как если бы она была невозможна.

 

В самом деле, это ведь означало бы, что все связи атомных электронов с ядрами ничего ее стоят, что они попросту не существуют. Тогда мир предстал бы перед нами как скопление голых ядер или, напротив, ядер, окруженных густыми тучами электронов. Все зависело бы от чистого слу« чая — от капризов механических столкновений частиц. Нечаянно возникали бы нелепейшие соединения элементов —• возникали и тут же распадались бы. В конце концов мир превратился бы в однообразную мешанину ядер и электронов— в бесформенный электронно-ядерный газ. Тоскливое зрелище мира, в котором некому было бы тосковать...

 

А невозможность ионизации означала бы, что связи электронов с ядрами раз и навсегда нерушимы. Такая перспектива нисколько не отрадней. Атомы и вправду были бы тогда навечно запечатанными, крепко-накрепко засургученными, неизменяемыми. Они стали бы, наконец, оправдывать свое первородное прозвище — «неделимые». Но природе нечего было бы с ними делать. Мир превратился бы в почтовый ящик, набитый письмами, которые «ельзя открыть и прочитать. Нелепый, недоступный даже воображению, гадательный уир...

 

Энергия ионизации не может быть нулевой — связи не существуют. И не может быть бесконечной — связи нерастор^ жимы. Все процессы в жизни природы конечны, кроме про-» цесса самой этой жизни, не имеющей во времени и пространстве ни начала, ни конца.

 

Неизбежность затраты энергии на ионизацию атомов (кто, где и как расходует ее или получает, нам сейчас совершенно неважно) делает это событие в одних случаях возможным, а в других — нет. И так как всякий раз баланс энергии вполне определенен, ибо всякий раз вполне определенны связи, которые разрываются или воссоздаются, то в руках ученых оказывается надежный способ вести одну из бухгалтерских книг природы. Они записывают в ней, как сводятся концы с концами во множестве явлений микромира.

 

Так невидимые и неслышные события, к которым, казалось бы, и не подступиться с точными измерениями, вдруг становятся предметом строгого учета. А тогда неудивительно, что появляется возможность их «увидеть и услышать».

Здесь лежит исток нескончаемой серии открытий в мире элементарных частиц. Здесь исток и открытия настоящего природного заповедника этих частиц— космических лучей.

 

Листочки электроскопа сами опадали со временем. Кто-то стягивал с них заряды, или, как говорят ученые, нейтрализовал их. Это могли быть только заряженные ионы.

Значит, кто-то, пренебрегая непроницаемостью герметического сосуда, все-таки в него проникал и превращал нейтральные атомы газа в странников Фарадея.

Пронизывать стенки камеры с электроскопом способны были рентгеновские лучи и лучи радиоактивных элементов. Их энергии хватило бы и на проникновение внутрь камеры и на ионизацию газа.

Так, может быть, подумали физики, вблизи камеры действительно всякий раз ютятся какие-то неведомые источники этих лучей? Вместо того чтобы искать и устранять их, проще было окружить камеру толстыми свинцовыми экранами—достаточно толстыми, чтобы такие лучи поглотить.

 

Вообразите себе бегуна, пересекающего пустую площадь: его бегу никто не мешает. Так движутся лучи в вакууме: на их пути могут попасться лишь редкие прохожие — единичные частицы вещества. Но если площадь заполнена народом, бегун вынужден продираться сквозь толпу, расталкивая встречных и теряя на это силы. В конце концов он выдохнется и застрянет в толпе. Это случится тем раньше, чем гуще толпа. Так движутся лучи через вещество. Да при этом они бегуны с завязанными глазами: выбирать направление им не дано. Чем плотнее вещество, тем короче путь, на котором они успевают растратить всю свою энергию. Но этот путь все-таки тем длиннее, чем их первоначальная энергия больше.

 

Толща свинца поглощала рентгеновские и радиоактивные лучи. А электроскоп разряжался! Было над чем задуматься.

 

Сначала физики махнули рукой — «ошибки опыта». Но эти мнимые ошибки повторялись с такой регулярностью и однообразием, что досада физиков на несовершенство приборов вскоре сменилась острейшим любопытством. Возникла самая естественная для той поры мысль: существуют еще какие-то сверхпроникающие, сверхэнергичные лучи, для которых и толща сшинца не преграда.

 

Что же они такое, эти дьявольские лучи? Как велика их чудовищная энергия? Откуда они приходят? Простые вопросы сменились сложными.

 

Поначалу новые предполагаемые лучи вовсе не считали космическими. Им приписывалось земное — почвенное—происхождение. Но отсюда немедленно следовал простой и легко проверяемый вывод: рождаясь в земной коре и пробиваясь сквозь толщу атмосферы снизу, они должны были терять энергию с высотой и все слабее ионизировать газ в замкнутой камере электроскопа. «Дух приключений» погнал ученых в горы — пешком, на лошадях, на машинах. И за облака — в зыбких гондолах воздушных шаров.

 

И вот тут-то оказалось, что все происходит так, словно небо и земля поменялись местами: с высотой электроскоп разряжался все быстрее, как если бы он не удалялся от источника лучей, а приближался к нему! В 1910 году австрийский физик Гесс, побывав на пятикилометровой высоте, впервые обоснованно высказал мысль, что это вовсе не земные, а «высотные лучи». Потом, уже после вынужденного бес- плодья тяжелых лет первой мировой войны, когда большинству физиков пришлось заниматься не своим делом, немец Кольхерстер поднялся на аэростате до высоты в двенадцать километров и установил, что там, за облаками, ионизация в 30 раз сильнее, чем на уровне моря!

 

Стало несомненным, что всепроникающие лучи приходят к нам откуда-то из мировых глубин. Еще ничего не зная об их составе и повадках, кроме того, что энергия их по нашим земным масштабам огромна, физики с полным правом назвали их космическими. Так началась сорокалетняя история их всестороннего исследования. Она продолжается и сегодня. И будет продолжаться завтра, потому что никогда и ни о чем •нельзя узнать всего или хотя бы достаточно много. И еще потому, что космические лучи интересуют всех.

 

Астрофизики и радиоастрономы ищут источники их происхождения. Радиотехникам и метеорологам важна их роль в ионизации земной атмосферы. Биологам и врачам нужно знать их действие на живую природу и человека. Неограниченный круг вопросов связан с космическими лучами, начиная с проблемы отклонения их в магнитном поле Земли и кончая статистикой раковых заболеваний.

 

Но нам нужно взглянуть на них только глазами физиков-* ядерщиков. И даже еще ограниченней — глазами физиков- элементарщиков (правда, такого слова еще нет в обиходе, однако рано или поздно оно, наверное, появится, как появилось уже слово «ядерщик» вслед за словом «атомщик»).

 

К подземным и высокогорным лабораториям ныне присоединились космические лаборатории на спутниках. Там приборы имеют дело с космическими лучами как бы «в чистом виде»,, еще не успевшими претерпеть никаких злоключений на своем пути через воздушный океан, окружающий Землю.

 

В этих первичных космических лучах были обнаружены ядра едва ли не всех устойчивых элементов. И можно говорить просто о химическом составе первичных лучей. Этот состав только приблизительно отражает относительную распространенность разных элементов во всей видимой вселенной вокруг нас. Чем тяжелее ядра, тем реже они попадаются. Ядер обыкновенного водорода — протонов — подавляюще много. Заметно меньше альфа-частиц — ядер следующего легкого элемента — гелия. Еще меньше ядер углерода, азота, кислорода, железа... Отступления от «нормы» — например, «слишком большой» процент лития, бериллия, бора—наводят физиков !на интересные размышления о ядерных реакциях в мировом пространстве, в результате которых возникает, очевидно, «избыток» этих элементов. Такие отступления от ожидаемого помогают ученым строить гипотезы о происхождении космического излучения.

 

 

К содержанию книги: Научно-художественная книга о физике и физиках

 

 Смотрите также:

  

Физика. энциклопедия по физике

Книга содержит сведения о жизни и деятельности ученых, внесших значительный вклад в развитие науки.
О физике

заниматься физикой как наукой или физикой, которая...

Эта книга адресована всем, кто интересуется физикой. В наше время знание основ физики необходимо каждому, чтобы иметь правильное представление об окружающем мире

Энциклопедический словарь

И старшего. Школьного возраста. 2-е издание исправленное и дополненное. В этой книге  Гиндикин С. Г. Рассказы о физиках и математиках

 

И. Г. Бехер. книга Бехера Подземная физика

В 1667 г. появилась книга И. Бехера «Подземная физика», в которой нашли отражение идеи автора о составных первоначалах сложных тел.

 

Последние добавления:

 

Право в медицине      Рыбаков. Русская история     Криминалист   ГПК РФ