Как образовываются овраги – водопроницаемость грунта – грунтовые воды


 

Грунтоведение

 

Образование оврагов

 

 

 

Впечатляющим является образование оврагов. Неудачно проведенная борозда вниз по склону — и через год-два дождевые потоки образуют в этом месте глубокий овраг.

 

Разрушающую деятельность воды на каждом шагу можно видеть на берегах морей. Мощные удары штормовых волн разбивают и крошат грунты, слагающие береговые откосы.

 

Большие неприятности доставляет размыв берегов жителям Великобритании. Так, в графстве Суссекс в отдельные годы берега отступают в глубь острова до 6 м.

 

Давайте теперь взглянем «в корень» этого явления. Не вызывает сомнения, что здесь действуют два фактора: энергия движущейся воды и способность грунтовых массивов к размыву. Изучением этой способности грунтов ученые занимаются уже давно. В последнее время она оценивается двумя показателями. Первый показатель — это скорость, при которой начинается отрыв частиц от массива. Нетрудно догадаться, что наиболее размываемыми должны быть илы« Их разрушение начинается при скоростях потока от 0,2 до 0,5 м/с» Более устойчивы пески. Они размываются в зависимости от крупности составляющих их песчинок при скоростях движения воды от 0,25 до 0,9 м/с.

 

Глинистые грунты очень разнообразны по составу и структуре, поэтому они ведут себя по-разному. Например, лёссы начинают разрушаться при скоростях 0,3—0,9 м/с, а моренные суглинки (образованные ледниками)—от 0,6—1,1 м/с. Менее всего способны к размыву глины и обломочные грунты (гравий, галька). Их разрушение возникает при скоростях 1,0—2,5 м/с ( 34).

Оказалось, что чем влажнее глинистые грунты, тем медленнее они размываются. Эту особенность стали использовать гидротехники для борьбы с размывом. Каналы, которые строятся в глинистых грунтах, предварительно замачиваются. Этот процесс осуществляется пропуском через только что построенный канал воды с малой скоростью.

 

Скальные грунты практически не разрушаются водой (если они только не состоят из водорастворимых минералов).

Большую роль в возникновении размыва играет способность грунтов к размоканию. Ясно, чем быстрее грунт размокает, распадаясь при этом на мелкие частицы, тем при меньших скоростях будет начинаться размыв.

 

Вторым показателем, который применяет грунтовед для прогноза размываемости грунтов, служит их способность к разрушению водным потоком. Она представляет собой величину слоя образца, который размывается при данной скорости за определенное время. Показателем размываемости является толщина смываемого слоя в миллиметрах в течение минуты при определенной скорости потока. Легко понять, что чем больше интенсивность подобного размыва, тем быстрее такой грунт будет разрушаться рекой или морскими волнами.

 

Предрасположенность рыхлых грунтов к размыву доставляет много неприятностей строителям каналов оросительных систем. Действительно, с одной стороны, к орошаемым полям нужно подать как можно больше воды. Для этого требуются максимальные скорости ее движения. Но они ограничиваются величинами, при которых стенки и дно каналов начинают размываться. Превышение этих критических скоростей чревато крупными неприятностями. Как быть? Есть два выхода из этого положения: либо упрочнить стенки и дно канала, либо просто одеть их бетоном, который не поддается размыву водой.

С другой стороны, возникает вопрос: как практически определить размывающую скорость и способность к размыву?

Нужно сказать, что эта задача оказалась достаточно сложной. Самое лучшее ее решение — организация наблюдения за размывом грунтов на опытных участках каналов. Но это длительный и дорогостоящий путь. Поэтому чаще всего грунтовед судит о размывающих скоростях и интенсивности процесса по результатам испытаний образцов грунтов в специальных лотках. В эти лотки помещаются монолиты, которые подвергаются действию потока. Его скорость постепенно увеличивается до момента начала размыва.

 

Кроме того, накопился большой опыт наблюдений за размывом грунтов берегов рек, каналов и морских побережий. Он позволяет прогнозировать скорости разрушения пород.

 

Ц. Е. Мирцхулава, используя ЭВМ, предложил математический метод оценки размывающей скорости по целому комплексу других свойств грунтов. Однако этот метод пока имеет больше теоретическое, чем практическое, значение.

На улице идет дождь. Прохожие обходят большие и маленькие лужи. Детвора с криками носится босиком по воде. Но вот дождь закончился. Выглянуло солнце. Через пару часов, а то и раньше все следы дождя исчезли. Только в некоторых местах еще поблескивают жалкие остатки дождевой воды, накопившиеся в углублениях поверхности. Куда же исчезла основная масса воды? На этот вопрос ответить не так-то просто. Конечно, в городе устроена дождевая канализация, по которой вода устремляется в реки и моря, С асфальта она под жаркими лучами солнца также быстро испаряется. Но, например, за городом нет канализации, да и асфальт только ria автомагистралях, а вода во время дождя даже не успевает образовать лужи. Дождь идет и идет, а луж нет.

В чем же дело? Почему на одних участках луж нет, а на других есть?

 

Оказывается, все дело в водопроницаемости грунтов.

Вспомним морской песчаный пляж. Набежит лениво волна, ее поток взберется по уклону, а вместо того, чтобы откатиться обратно, большая часть воды на наших глазах буквально проваливается в песок.

 

Мы уже знаем, что пески имеют крупные поры (размером более 0,01 мм), а это превосходный путь для движения воды. Поэтому песок, подобно ситу, не может удержать жидкости. Сложными путями она проникает все глубже и глубже (ученые говорят «инфильт- руется»), пока не встретит другой грунт, не пропускающий воду, например глину. Дальше потоку пути нет. Глина почти не содержит крупных пор, а ее тонкая пористость не пропускает свободную воду.

Конечно, очень медленно вода просачивается и в глину, но это движение происходит совершенно по-иному.

Специалисты способность грунтов пропускать воду называют водопроницаемостью. Ее оценивают показателем, получившим название коэффициента фильтрации

 

Водопроницаемость — очень важная характеристика грунтов. Она прежде всего зависит от содержания крупных пор.

Самый проницаемый для воды — крупноблочный грунт, состоящий из валунов, щебня, галечников и гравия. Вода течет по крупным трещинам скальных пород (граниты, гнейсы и др.), как по водопроводным трубам. Скорость ее движения, конечно, меньше, чем в поверхностных потоках. Но все же за сутки она может пробегать километровые расстояния.

 

Много больших пор и в крупнозернистых песках, осдержащих зерна размером 0,5—2 мм, а иногда и гравийные частицы диаметром 2—40 мм. В таких грунтах водопроницаемость оказывается довольно большой. Их коэффициент фильтрации колеблется от 100 до 600 м/сут. Это означает, что при уклоне потока 45° вода может пробежать за сутки 100—600 м.

Чем меньше песчинка, тем тоньше становятся поры. Движение воды в грунтах замедляется. Так, в песках, состоящих из средних по размеру частиц (диаметром 0,25—0,5 мм), величина коэффициента фильтрации падает до 10—50 м/сут (при том же уклоне потока 45э). Если пески мелкие (диаметр частиц менее 0,25 мм), то вода движется совсем медленно — от 0,5 до 5 м/сут.

Рассмотрим глинистые грунты, состоящие в значительной степени из частиц размером менее 0,002 мм. Поры в таких глинах также очень малы (меньше 0,005 мм), поэтому движения свободной воды (или фильтрации) не происходит. Большая часть тонких пор глин заполнена в природе связанной водой. Когда в эти грунты .поступают новые молекулы Н20, то пленки, расположенные ближе к источнику, становятся толще. В этом случае начинается перемещение влаги от более крупных пленок к более тонким. Возникает так называемый пленочный ток воды.

 

Кроме того, в глинистых грунтах возможен осмотический ток влаги. Он возникает тогда, когда в различных участках глины присутствуют растворы с разной концентрацией солей. В этом случае ток влаги направлен к участкам с менее солоноватыми водами.

 Наконец, на движение воды в подобных грунтах оказывает значительное влияние изменение температуры, особенно ее перепады в различных частях массива.

Несмотря на существование в глинах всех этих видов движения влаги, ее скорость оказывается в тысячи раз медленнее, чем фильтрация свободной воды.

 

В лёссовых грунтах, как мы уже знаем, содержится много крупных пор. Вот поэтому они обладают довольно хорошей водопроницаемостью, которая достигает 2 м/сут.

На  35 показаны сравнительные скорости фильтрации воды в различных грунтах.

Теперь понятно, что когда идет дождь, то на хорошо фильтрующихся грунтах вода не накапливается, а на водонепроницаемых образуются лужи. Вода, инфильтруясь в песчаные пласты и достигая поверхности глин, дальше начинает двигаться вниз по ее уклону. Так возникает поток грунтовой воды.

 

Нетрудно понять, что водопроницаемость является важным свойством грунтов. Ее величину определяют либо в лаборатории на специальных фильтрационных приборах, либо в полевых условиях. В последнем случае о величине коэффициента фильтрации сухих грунтов судят по скорости впитывания воды, наливаемой в специальные стандартные кольца. При оценке водопроницаемости водЬнасыщен- ных грунтовых массивов используется метод откачки. Он заключается в определении коэффициента фильтрации по количеству извлекаемой воды при определенном понижении уровня —чем больше откачивается воды, тем значительнее водопроницаемость грунтов.

 

Знать величину водопроницаемости необходимо при создании водо* хранилищ, искусственных морей, плотин, каналов, оросительных сн« стем и во многих других случаях. Она позволяет рассчитать водопотери из этих сооружений.

 

 

 Смотрите также:

 

ГРУНТЫ - строительные свойства и классификация грунтов

§ 2. Основные строительные свойства и классификация грунтов. Грунтами называют породы, залегающие в верхних слоях земной коры.

 

Сопротивление сдвигу грунта

  1. Глава 1. ИССЛЕДОВАНИЕ ГРУНТОВ 1.

Отношения, связанные с использованием воды регулируются...

вод заболачивание и засоление земель, эрозию почв, образование оврагов, оползней, селевых потоков "и других явлений".

 

Планировка участка. Срез террасирование склонов и сооружение...

Развитию оврагов способствует наличие рыхлых горных и глинистых пород, лессовидных суглинков, легко поддающихся размыву.