ФИЗИОЛОГИЯ ЧЕЛОВЕКА

  

 

Серия: Учебная литература для студентов медицинских вузов


под  редакцией В.М.Покровского, Г.Ф.Коротько

 

Глава 1.  ВОЗБУДИМЫЕ ТКАНИ

 

Потенциал покоя

 

Схема опыта Ходжкина—Хаксли приведена на рис. 2.7. В аксон кальмара диаметром около 1 мм, помещенный в морскую воду, вводили активный электрод, второй электрод (электрод сравнения) находился в морской воде. В момент введения электрода внутрь аксона регистрировали скачок отрицательного потенциала, т. е. внутренняя среда аксона была заряжена отрицательно относительно внешней среды.

 

Как указывалось в разделе 2.1.2, электрический потенциал со­держимого живых клеток принято измерять относительно потенци­ала внешней среды, который обычно принимают равным нулю. Поэтому считают синонимами такие понятия, как трансмембранная разность потенциалов в покое, потенциал покоя, мембранный по­тенциал. Обычно величина потенциала покоя колеблется от -70 до -95 мВ. Согласно концепции Ходжкина и Хаксли, величина потенциала покоя зависит от ряда факторов, в частности от селек­тивной (избирательной) проницаемости клеточной мембраны для различных ионов; различной концентрации ионов цитоплазмы клет­ки и ионов окружающей среды (ионной асимметрии); работы ме­ханизмов активного транспорта ионов. Все эти факторы тесно свя­заны между собой и их разделение имеет определенную условность.

 

Известно, что в невозбужденном состоянии клеточная мембрана высокопроницаема для ионов калия и малопроницаема для ионов натрия. Это было показано в опытах с использованием изотопов натрия и калия: спустя некоторое время после введения внутрь аксона радиоактивного калия его обнаруживали во внешней среде. Таким образом, происходит пассивный (по градиенту концентраций) выход ионов калия из аксона. Добавление радиоактивного натрия во внешнюю среду приводило к незначительному повышению его концентрации внутри аксона. Пассивный вход натрия внутрь аксона несколько уменьшает величину потенциала покоя.

 

Установлено, что имеется разность концентраций ионов калия вне и внутри клетки, причем внутри клетки ионов калия примерно в 20—50 раз больше, чем вне клетки

 

Разность концентраций ионов калия вне и внутри клетки и высо­кая проницаемость клеточной мембраны для ионов калия обеспечива­ют диффузионный ток этих ионов из клетки наружу и накопление избытка положительных ионов К+ на наружной стороне клеточной мембраны, что противодействует дальнейшему выходу ионов К+ из клетки. Диффузионный ток ионов калия существует до тех пор, пока стремление их двигаться по концентрационному градиенту не уравно­весится разностью потенциалов на мембране. Эта разность потенциа­лов называется калиевым равновесным потенциалом.

 

Равновесный потенциал (для соответствующего иона, Ек) — разность потенциалов между внутренней средой клетки и внекле­точной жидкостью, при которой вход и выход иона уравновешен (химическая разность потенциалов равна электрической).

 

Важно подчеркнуть следующие два момента: 1) состояние рав­новесия наступает в результате диффузии лишь очень небольшого количества ионов (по сравнению с их общим содержанием); кали­евый равновесный потенциал всегда больше (по абсолютному зна­чению) реального потенциала покоя, поскольку мембрана в покое не является идеальным изолятором, в частности имеется небольшая утечка ионов Na+. Сопоставление теоретических расчетов с исполь­зованием уравнений постоянного поля Д. Голдмана, формулы Нернста показали хорошее совпадение с экспериментальными данными при изменении вне- и внутриклеточной концентрации К+ (рис. 2.8).

 

Трансмембранная диффузионная разность потенциалов рассчи­тывается по формуле Нернста:

 

Ek=(RT/ZF)ln(Ko/Ki)

 

где Ек — равновесный потенциал, R — газовая постоянная, Т — абсолютная температура, Z — валентность нона, F — постоянная Фарадея, Ко и Ki — концентрации ионов К+ вне и внутри клетки соответственно.

 

Величина мембранного потенциала для значений концентрации ионов К+, приведенных в табл. 2.2, при температуре +20 °С составит примерно —60 мВ. Поскольку концентрация ионов К+ вне клетки меньше, чем внутри, Ек будет отрицательным.

 

В состоянии покоя клеточная мембрана высокопроницаема не только для ионов К+. У мышечных волокон мембрана высокопро­ницаема для ионов СГ. В клетках с высокой проницаемостью для ионов Сl-, как правило, оба иона (Сl- и К+) практически в одинаковой степени участвуют в создании потенциала покоя.

 

Известно, что в любой точке электролита количество анионов всегда соответствует количеству катионов (принцип электронейт­ральности), поэтому внутренняя среда клетки в любой точке электронейтральна. Действительно, в опытах Ходжкина, Хаксли и Катца перемещение электрода внутри аксона не выявило различие в транс­мембранной разности потенциалов.

 

Поскольку мембраны живых клеток в той или иной степени проницаемы для всех ионов, совершенно очевидно, что без специ­альных механизмов невозможно поддерживать постоянную разность концентрации ионов (ионную асимметрию). В клеточных мембранах существуют специальные системы активного транспорта, работаю­щие с затратой энергии и перемещающие ионы против градиента концентраций. Экспериментальным доказательством существования механизмов активного транспорта служат результаты опытов, в которых активность АТФазы подавляли различными способами, на­пример сердечным гликозидом оуабаином. При этом происходило выравнивание концентраций ионов К+ вне и внутри клетки и мем­бранный потенциал уменьшался до нуля.

 

Важнейшим механизмом, поддерживающим низкую внутрикле­точную концентрацию ионов Na+ и высокую концентрацию ионов К+, является натрий-калиевый насос (рис. 2.9). Известно, что в клеточной мембране имеется система переносчиков, каждый из ко­торых связывается с 3 находящимися внутри клетки ионами Na+ и выводит их наружу. С наружной стороны переносчик связывается с 2 находящимися вне клетки ионами К+, которые переносятся в цитоплазму. Энергообеспечение работы систем переносчиков обес­печивается АТФ. Функционирование насоса по такой схеме приводит к следующим результатам.

 

1. Поддерживается высокая концентрация ионов К+ внутри клет­ки, что обеспечивает постоянство величины потенциала покоя. Вследствие того что за один цикл обмена ионов из клетки выводится на один положительный ион больше, чем вводится, активный транс­порт играет роль в создании потенциала покоя. В этом случае говорят об электрогенном насосе. Однако величина вклада электрогенного насоса в общее значение потенциала покоя обычно невелика и составляет несколько милливольт.

 

2.     Поддерживается низкая концентрация ионов натрия внутри клетки, что, с одной стороны, обеспечивает работу механизма генерации потенциала действия, с другой — обеспечивает сохранение нормальных осмолярности и объема клетки.

 

3.     Поддерживая стабильный концентрационный градиент Na+, натрий-калиевый насос способствует сопряженному транспорту ами­нокислот и сахаров через клеточную мембрану.

 

Таким образом, возникновение трансмембранной разности по­тенциалов (потенциала покоя) обусловлено высокой проводимостью клеточной мембраны в состоянии покоя для ионов К+ (для мышечных клеток и ионов Сl-), ионной асимметрией концентраций для ионов К+ (для мышечных клеток и для ионов Cl-), работой систем активного транспорта, которые создают и поддерживают ионную асимметрию.

 

Следующая глава >>>


Физиология человека Покровского