СЛОВАРЬ ЮНОГО МАТЕМАТИКА

 

 

ТЕОРЕМА МОРЛИ  

 

 

 

Одна из трех знаменитых задач древности задача о делении произвольного угла на три равные части. Лишь сравнительно недавно было доказано, что деление угла с помощью циркуля и линейки не всегда возможно. Видимо, этим объясняется то, что лишь в 1899 г был открыт следующий удивительный факт: если в произвольном треугольнике разделить каждый угол на три равные части, то точки пересечения делящих их лучей  окажутся вершинами равностороннего треугольника. Эта теорема получила название теоремы Франка Морли, по имени американского математика, открывшего этот фа» . Позже было замечено, что этим свойством обладают также и точки пересечения лучей, делящих на равные части внешние углы произвольного треугольника  являются недостающими вершинами В и С искомого треугольника. Остается лишь соединить концы отрезка ВС с точкой А.

 

Искусство построения геометрических фигур при помощи циркуля и линейки было в высокой степени развито в Древней Греции. Одна из труднейших задач на построение, которую уже тогда умели выполнять, построение окружности, касающейся трех данных окружностей. Эта задача называется задачей Аполлония - по имени греческого геометра Аполлония из Перги (ок. 200 г до н.э.).

 

Однако древним геометрам никак не удавалось выполнить некоторые построения, используя лишь циркуль и линейку, а построения, выполненные с помощью других инструментов, не считались геометрическими. К числу таких задач относятся так называемые три знаменитые классические задачи древности: квадратура круга, трисекция угла и удвоение куба, а именно построение квадрата, равновеликого данному кругу, деление произвольного угла на три равные части и построение стороны куба, объем которого вдвое больше объема заданного куба.

 

Эти три задачи привлекали внимание выдающихся математиков на протяжении столетий, и лишь в середине прошлого века была доказана их неразрешимость, т.е. невозможность указанных построений лишь с помощью циркуля и линейки. Эти результаты были получены средствами не геометрии, а алгебры, что еще раз подчеркнуло единство математики. Однако до сих пор еще встречаются люди, которые пытаются найти решения указанных задач при помощи циркуля и линейки.

Еще одной интереснейшей задачей на построение с помощью циркуля и линейки является задача построения правильного многоугольника с заданным числом сторон. Древние греки умели строить правильный треугольник, квадрат, правильный пятиугольник и пятнадцатиугольиик. а также все многоугольники, которые получаются из них удвоением числа сторон, и только их.

 

Новый шаг в решении поставленной задачи был сделан лишь в 1801 г. немецким математиком К. Гауссом, который открыл способ построения правильного семнадцатиугольника при помощи циркуля и линейки и указал все значения и, при которых возможно построение правильного н-угольника указанными средствами. Этими многоугольниками оказались лишь многоугольники, у которых количество сторон является простым числом Ферма (т. е. простым числом вида 2г" + 1) (см. Ферма малая теорема) или произведением нескольких различных простых чисел Ферма, а также те, которые получаются из них путем удвоения числа сторон. Таким образом, с помощью циркуля и линейки оказалось невозможным построить правильный семиугольник, девяти-, одиннадцати-, тринадцатиугольник и т.д.

 

Другие геометрические построения. Однако в практических построениях нас никто не ограничивает в выборе математических инструментов, которых со времен древнегреческих математиков было создано великое множество. Чтобы выполнить большинство построений с нужной точностью, достаточно линейки с делениями и траспортира. Заметим, что точкя, нанесенная карандашом на бумаге, отнюдь не является идеально математической точкой, а имеет определенные размеры, как и точка, полученная пересечением двух прямых, проведенных карандашом, особенно если угол между ними мал.

Довольно любопытны некоторые приближенные способы построения. Например, приближенная квадратура круга получается, если за сторону квадрата взять хорду, проходящую через конец одного из радиусов круга и середину перпендикулярного радиуса . Этому построению соответствует значение .

 

Теория построений при помощи циркуля и линейки получила широкое развитие в конце XIX в. Например, было показано, что любое построение, выполняемое с помощью циркуля и линейки, можно выполнить с помощью лишь одной линейки, если в плоскости построения задана некоторая окружность и указан ее центр.

 

 

 

Смотрите также:

 

Основная теорема алгебры. Леонард Эйлер. Гаусс. Книги из серии...

«Основная теорема алгебры в виде утверждения: алгебраическое уравнение имеет столько корней, какова его степень, высказана Жираром и Декартом...

 

ВЗАИМНОСТИ ПЕРЕМЕЩЕНИЙ ПРИНЦИП теорема Максвелла.

Новое формальное истолкование электродинамических уравнений Максвелла. … Об одной теореме теории вероятностей и ее применении в теории излучения.

 

Пифагорейский союз. Основное мировоззренческое положение.

В конце VI в. до н.э. центр научной мысли Древней Греции перемещается с востока средиземноморского мира на его запад — на побережие Южной Италии и Сицилии, где греки...

 

Аш - теорема. Людвиг Больцман. Книги из серии 100 Сто Великих

«Аш-теорема» стала вершиной учения Больцмана о мироздании. Формула этого начала была позднее высечена в качестве эпитафии на памятнике над его могилой.