Вся библиотека >>>

Содержание книги >>>

 

Книги по строительству

 Железобетонные конструкции


Быт. Хозяйство. Строительство. Техника

 

Глава 2. Экспериментальные основы теории сопротивления железобетона   и  методы  расчета  железобетонных  конструкций

 

 

Развитие методов расчета сечений

 

1. Метод расчета по допускаемым напряжениям

Метод расчета прочности сечений изгибаемых элементов по допускаемым напряжениям исторически сформировался первым; в нем за основу взята стадия II напряженно-деформированного состояния и приняты следующие допущения: 1) бетон растянутой зоны не работает, растягивающее напряжение воспринимается арматурой; 2) бетой сжатой зоны работает упруго, а зависимость между напряжениями и деформациями линейная согласно закону Гука; 3) нормальные к продольной оси сечения плоские до изгиба остаются плоскими после изгиба, т. е. гипотеза плоских сечений.

Как следствие этих допущений, в бетоне сжатой зоны принимается треугольная эпюра напряжений и постоянное значение отношения модулей упругости материалов v=Es/Eb (рис Н.З). Рассматривается приведенное однородное сечение, в котором площадь сечения арматуры As заменяется площадью сечеиия бетона, равной vAs.

Напряжения в бетоне и арматуре ограничивались допускаемыми напряжениями, которые устанавливались как некоторые доли временного сопротивления бетона сжатию Об=0,45 R (где R — марка бетона, принимающаяся равной кубиковои прочности бетона) и предела текучести арматуры as=0,5ay.

Основной недостаток метода расчета сечений по допускаемым напряжениям заключается в том, что бетон рассматривается как упругий материал. Действительное распределение напряжений в бетоне по сечению в стадии II не отвечает треугольной эпюре напряжений, а v— число не постоянное, зависящее от значения напряжения в бетоне, продолжительности его действия и других факторов. Не помогает и установление разных значений числа v в зависимости от марки бетона. Установлено, что действительные напряжения в арматуре меньше вычисленных. Этот метод расчета не только не дает возможности спроектировать конструкцию с заранее заданным коэффициентом запаса, но и не позволяет определить истинные напряжения в материалах. В ряде случаев приводит к излишнему расходу материалов, требует установки арматуры в бетоне сжатой зоны и др.

Особенно ярко выяснились недостатки метода при внедрении в практику новых видов бетона (тяжелых бетонов высоких марок, легких бетонов на пористых заполнителях) и арматурных сталей более высокой прочности.

2. Метод расчета сечений по разрушающим усилиям

Недостатки метода расчета по допускаемым напряжениям побудили советских ученых к выполнению специальных исследований и разработке метода расчета, который лучше отвечал бы упругспластическим свойствам железобетона. Были разработаны новые нормы и технические условия проектирования железобетонных конструкций, введенные в действие в 1938 г.

Метод расчета сечений по разрушающим усилиям исходит из стадии III напряженно-деформированного состояния при изгибе. Работа бетона растянутой зоны не учитывается. В расчетные формулы вместо допускаемых напряжений вводятся предел прочности бетона при сжатии и предел текучести арматуры. При этом отпадает необходимость в числе v. Эпюра напряжений в бетоне сжатой зоны вначале принималась криволинейной, а затем была принята прямоугольной. Усилие, допускаемое при эксплуатации конструкции, определяется делением разрушающего усилия на общий коэффициент запаса прочности k.



При определении разрушающих усилий элементов, работающих по случаю I, разрушение которых начинается по растянутой зоне, вместо гипотезы плоских сечений применяется принцип пластического разрушения, согласно которому и в арматуре, и в бетоне напряжения достигают предельных значений одновременно. На основании принципа пластических разрушений (впервые обоснованного советским ученым А. Ф. Лолейтом) были получены расчетные формулы разрушающих усилий изгибаемых и центрально-загруженных элементов.

Для изгибаемого элемента любой симметричной формы сечения ( П.4) высоту сжатой зоны определяют из уравнения равновесия внутренних усилий в стадии разрушения

где /?и — временное сопротивление бетона сжатию прн изгибе, которое принималось равным 1,25 Rb; R* — предел текучести арматуры; Аъ — площадь бетона сжатой зоны сечения.

 Sb=AtZb — статический момент площади бетона сжатой зоны относительно оси, проходящей через центр тяжести растянутой арматуры; гь — расстояние от центра тяжести растянутой арматуры до центра тяжести площади бетона сжатой зоны.

Граница между случаем 1 и случаем 2 устанавливается на основе опытных данных: при 51б/5о<О,8—случай 1, где So — статический момент всей рабочей площади бетона относительно оси,    проходящей через центр тяжести растянутой арматуры. Для прямоугольных и тавровых сечений с полкой в сжатой зоне граничное значение высоты сжатой зоны л;=0,55 hQ.

Таким образом, по этому методу расчета в расчетных формулах участвует запас прочности k — единый для элемента в целом. Коэффициент запаса прочности k был установлен нормами в зависимости от причины разрушения конструкции, сочетания силовых воздействий и отношения усилий Tv от временных нагрузок к усилиям Tg от постоянных нагрузок. В случае преобладания временной нагрузки перегрузка конструкции более вероятна и коэффициент запаса должен быть больше. Так, для плит и балок при основном сочетании нагрузок и отношении Tv/Tg^2 £ = 1Д при Tv/Tg>2 k=2 и т.д. Для сборных конструкций заводского изготовления при основных и дополнительных сочетаниях нагрузок коэффициент запаса уменьшался на 0,2, но принимался не ниже 1,5.

В расчетах сечений по разрушающим усилиям внутренние усилия Ж, Q, N от нагрузки определяют также в стадии разрушения конструкции, т. е. с учетом образования пластических шарниров. Для многих видов конструкций — плит, неразрезных балок, рам — такого рода расчеты приводят к существенному экономическому эффекту.

Метод расчета по разрушающим усилиям, учитывающий упругопластические свойства железобетона, более правильно отражает действительную работу сечений конструкции под нагрузкой и является серьезным развитием в теории сопротивления железобетона. Большим преимуществом этого метода по сравнению с методом расчета по допускаемым напряжениям является возможность определения близкого к действительности общего коэффициента запаса прочности. При расчете по разрушающим усилиям в ряде случаев получается меньший расход арматурной стали по сравнению с расходом стали по методу допускаемых напряжений. Например, в изгибаемых элементах сжатая арматура по расчету обычно не требуется.

Недостаток метода расчета сечений по разрушающим усилиям заключается в том, что возможные отклонения фактических нагрузок и прочностных характеристик материалов от их расчетных значений не могут быть явно учтены при одном общем синтезирующем коэффициенте запаса прочности.

    

 «Железобетонные конструкции»       Следующая страница >>>

 

 Смотрите также:

 

Как приготовить бетон и строительные растворы  

 

Высокопрочный бетон

 

Растворы строительные

 

Смеси бетонные

 

ГЛАВА 1. Портландцемент

 

ГЛАВА 2. Специальные цементы

Виды портландцементов

Обычный портландцемент

Быстротвердеющий портландцемент

Особобыстротвердеющий портландцемент

Портландцемент с умеренной экзотермией

Сульфатостойкий портландцемент

Шлакопортландцемент

Сульфато-шлаковый цемент

Пуццолановые портландцементы

Белый цемент

Прочие портландцементы

Ускорители и замедлители твердения

Пластифицирующие добавки

 

ГЛАВА 3. Свойства заполнителей

Общая классификация заполнителей

Природные заполнители для бетона

Отбор проб

Форма и текстура зёрен

Сцепление заполнителя с цементным камнем

Прочность заполнителя

Прочие механические свойства заполнителя

Удельный вес заполнителя

Насыпной объемный вес

Пористость и водопоглощение заполнителя

Влажность заполнителя

Набухание песка

Вредные примеси в заполнителе

Органические примеси

Глинистые, илистые и пылевидные частицы в заполнителе

Растворимые соли

Слабые и выветрелые зерна заполнителя

Равномерность изменения объема заполнителя

Реакция щелочей цемента с заполнителями бетона

Термические свойства заполнителя

Ситовой анализ

Модуль крупности

Требования к зерновому составу заполнителя

Рациональные зерновые составы заполнителей

Зерновой состав мелкого и крупного заполнителей

Особо крупные и особо мелкие зерна заполнителя

«Прерывистый» зерновой состав заполнителя

Наибольшая крупность заполнителя

Использование крупных камней

 

ГЛАВА 4. Бетонная смесь

Определение удобоукладываемости бетона

Факторы, влияющие на удобоукладываемость

Измерение удобоукладываемости

Метод осадки конуса

Определение коэффициента уплотнения

Определение пластичности

Испытание на изменение формы

Испытание по методу Вебе

Метод пенетрации шара

Сравнение методов испытаний

Влияние времени и температуры на удобоукладываемость

Расслаивание бетона

Водоотделение

Перемешивание бетонной смеси

Равномерность перемешивания

Время перемешивания бетона

Вибрирование бетона

Глубинные вибраторы

Наружные вибраторы

Вибростолы

Повторное вибрирование

Бетонирование в жаркую погоду

Товарный бетон

Бетонная смесь для подачи бетононасосом

Раздельная укладка бетонной смеси методом «Прелакт»

 

ГЛАВА 5. Прочность бетона

Водоцементное отношение

Объемная концентрация геля

«Эффективная» вода в смеси

Прочность бетона при растяжении

Трещинообразование и разрушение при сжатии

Влияние крупного заполнителя на прочность бетона

Влияние жирности смеси на прочность бетона

Влияние возраста на прочность бетона

Самозалечивание трещин в бетоне

Прочность бетона при сжатии и прочность при растяжении

Сцепление между бетоном и арматурой

Твердение бетона

Методы ухода за бетоном

Влияние температуры на прочность бетона

Пропаривание при атмосферном давлении

Пропаривание при повышенном давлении

Качество воды затворения

 

ГЛАВА 6. Упругость, усадка и ползучесть бетона

Модуль упругости

Динамический модуль упругости

Начальные изменения объема

Набухание

Усадка при высыхании бетона

Факторы влияющие на усадку бетона

Влияние ухода и условия твердения бетона

Дифференциальная усадка бетона

Влажностные деформации бетона

Усадка за счет карбонизации бетона

Ползучесть бетона

Факторы влияющие на ползучесть бетона

Ползучесть во времени

Природа ползучести бетона

Действие ползучести

 

ГЛАВА 7. Долговечность бетона

Проницаемость бетона

Химические воздействия на бетон

Испытание бетона на сульфатостойкость

Действие морской воды на бетон

Действие мороза на свежеуложенный бетон

Зимнее бетонирование

Действие мороза на затвердевший бетон

Морозостойкий бетон

Испытания бетона на морозостойкость

Влияние солей на бетон

Бетон с воздухововлекающими добавками

Воздухововлечение

Содержание воздуха

Влияние воздухововлечения

Измерение содержания воздуха

Тепловые свойства бетона

Теплопроводность бетона

Коэффициент термического расширения бетона

Огнестойкость бетона


ГЛАВА 8. Испытание затвердевшего бетона

Испытания на сжатие

Испытание кубов

Испытание цилиндров

Испытание призм

Влияние условий испытаний образцов

Испытание образцов на сжатие

Разрушение образцов при сжатии

Влияние отношения высоты к диаметру на прочность бетона

Сравнение прочности бетонных кубов и цилиндров

Испытание бетона на изгиб

Размеры образца и размеры заполнителя

Керны для испытаний

Ускоренное испытание бетона

Испытания бетона молотком

Испытания бетона ультразвуком

Истираемость бетона

Содержание цемента в бетоне


ГЛАВА 9. Легкие и особотяжелые бетоны

Классификация легких бетонов

Заполнители бетона

Бетон на легких заполнителях

Ячеистый бетон

Беспесчаные бетоны

Бетон на древесных опилках

Особотяжелый бетон