f  Вся электронная библиотека >>>

 Социально-экономическая статистика >>

 

Учебные пособия

Курс социально-экономической статистики


Раздел: Экономика

 

54.1. Трендовые модели прогнозирования

 

Статистические наблюдения в социально-экономических исследованиях обычно проводятся регулярно через равные отрезки времени и представляются в виде временных рядов xt, где t = 1, 2, ..., п. В качестве инструмента статистического прогнозирования временных рядов служат трендовые регрессионные модели, параметры которых оцениваются по имеющейся статистической базе, а затем основные тенденции (тренды) экстраполируются на заданный интервал времени.

Методология статистического прогнозирования предполагает построение и испытание многих моделей для каждого временного ряда, их сравнение на основе статистических критериев и отбор наилучших из них для прогнозирования.

При моделировании сезонных явлений в статистических исследованиях различают два типа колебаний: мультипликативные и аддитивные. В мультипликативном случае размах сезонных колебаний изменяется во времени пропорционально уровню тренда и отражается в статистической модели множителем. При аддитивной сезонности предполагается, что амплитуда сезонных отклонений постоянна и не зависит от уровня тренда, а сами колебания представлены в модели слагаемым.

Основой большинства методов прогнозирования является экстраполяция, связанная с распространением закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы, или — в более широком смысле слова — это получение представлений о будущем на основе информации, относящейся к прошлому и настоящему.

Наиболее известны и широко применяются трендовые и адаптивные методы прогнозирования. Среди последних можно выделить такие, как методы авторегрессии, скользящего среднего (Бокса — Дженкинса и адаптивной фильтрации), методы экспоненциального сглаживания (Хольта, Брауна и экспоненциальной средней) и др.

Для оценки качества исследуемой модели прогноза используют несколько статистических критериев.

Наиболее распространенными критериями являются следующие.

Относительная ошибка аппроксимации:

 

                  (54.1)

 

где et = хt -  — ошибка прогноза;

хt фактическое значение показателя;

 — прогнозируемое значение.

Данный показатель используется в случае сравнения точности прогнозов по нескольким моделям. При этом считают, что точность модели является высокой, когда  < 10%, хорошей — при  = 10—20% и удовлетворительной — при  = 20—50%.

 

 

 

 

Средняя квадратическая ошибка:

 

                (54.2)

 

где k число оцениваемых коэффициентов уравнения.

Наряду с точечным в практике прогнозирования широко используют интервальный прогноз. При этом доверительный интервал чаще всего задается неравенствами

 

                   (54.3)

 

где tα — табличное значение, определяемое по t-распределению Стьюдента при уровне значимости α и числе степеней свободы п - k.

В литературе представлено большое число математико-статистических моделей для адекватного описания разнообразных тенденций временных рядов.

Наиболее распространенными видами трендовых моделей, характеризующих монотонное возрастание или убывание исследуемого явления, являются:

 

                      (54.4)

 

Правильно выбранная модель должна соответствовать характеру изменений тенденции исследуемого явления; При этом величина еt должна носить случайный характер с нулевой средней.

Кроме того, ошибки аппроксимации et должны быть независимыми между собой и подчиняться нормальному закону распределения et Î N (0, σ). Независимость ошибок et, т.е. отсутствие автокорреляции остатков, обычно проверяется по критерию Дарбина—Уотсона, основанного на статистике:

 

                      (54.5)

 

где et = xt - .

Если отклонения не коррелированы, то величина DW приблизительно равна двум. При наличии положительной автокорреляции 0 ≤ DW 2, а отрицательной — 2 ≤ D W ≤ 4.

О коррелированности остатков можно также судить по коррелограмме для отклонений от тренда, которая представляет собой график функции относительно τ коэффициента автокорреляции, который вычисляется по формуле

 

                 (54.6)

 

где τ = 0, 1, 2 ... .                                                      

После выбора наиболее подходящей аналитической функции для тренда его используют для прогнозирования на основе экстраполяции на заданное число временных интервалов.

Рассмотрим задачу сглаживания сезонных колебаний, исходя из ряда Vt = хt - , где xt значение исходного временного ряда в момент t, а  — оценка соответствующего значения тренда (t = 1, 2, ..., п).

Так как сезонные колебания представляют собой циклический, повторяющийся во времени процесс, то в качестве сглаживающих функций используется гармонический ряд (ряд Фурье) следующего вида:

 

 

Оценки параметров αi и βi модели определяют из выражений

 

            (54.7)

 

где k = п / 2 максимально допустимое число гармоник;

ωi = 2πi / п — угловая частота i-й гармоники (i = 1, 2, ..., т).

Пусть т — число гармоник, используемых для сглаживания сезонных колебаний (т < k). Тогда оценка гармонического ряда имеет вид

 

                        (54.8)

 

а расчетные значения временного ряда исходного показателя определяются по формуле

 

 

К содержанию книги: Курс социально-экономической статистики

 

Смотрите также:

  

 СТАТИСТИКА ЭКОНОМИЧЕСКАЯ. Отрасль статистики, изучающая ...

СТАТИСТИКА ЭКОНОМИЧЕСКАЯ. Отрасль статистики, изучающая материальное
производство с целью выявления пропорций, тенденций и закономерностей развития ...
bibliotekar.ru/biznes-15-6/133.htm

 

  ПРОГНОЗ ЭКОНОМИЧЕСКОЙ АКТИВНОСТИ статистика ...

ПРОГНОЗ ЭКОНОМИЧЕСКОЙ АКТИВНОСТИ ... Вводный курс по
экономической теории ... Главные направления современной экономической
bibliotekar.ru/biznes-64/164.htm

 

  Деньги. Кредит. Банки

Л.П. Кроливецкой. - М.: Финансы и статистика, 1996. Березина М.П.
Безналичные расчеты в экономике России. - М.: Консалт-банкир, 1997.
bibliotekar.ru/biznes-36/index.htm

 

  ОСНОВНЫЕ ВИДЫ ЭКОНОМИЧЕСКОЙ ИНФОРМАЦИИ

ОСНОВНЫЕ ВИДЫ ЭКОНОМИЧЕСКОЙ ИНФОРМАЦИИ ... Статистика дает
общую картину состояния и развития национального хозяйства, освещает ...
bibliotekar.ru/mezhdunarodnye-otnosheniya.../184.htm

 

  Моделирование рисковых ситуаций в экономике и бизнесе

Для студентов, обучающихся по специальностям «Статистика», «
Математические методы и исследование операций в экономике», «
bibliotekar.ru/riskovye-situacii-2/index.htm

 

  Практическое значение экономической теории. Главные ...

межотраслевых (экономическая география, демография, статистика и др.).
Экономическая теория — одна из общественных наук наряду с историей, ...
bibliotekar.ru/biznes-38/9.htm

 

  Принципы экономической науки

Азимов Л.Б., Журавская Е.В., Макарова О.Ю. Преподавание экономики в
школе. ... М.: Финансы и статистика, 1994. ... Антология экономической
bibliotekar.ru/biznes-63/25.htm

 

  Деятельность предприятия. Экономика предприятия

М.: Финансы и статистика, 1996. 11. Настольная книга финансиста / Под ред.
В.Г. Панскова. – М: Международный центр финансово-экономического ...
www.bibliotekar.ru/economika-predpriyatiya/

 

ВНЕШНЕЭКОНОМИЧЕСКИЕ СВЯЗИ   Внешнеэкономическая деятельность предприятия