Сушка лакокрасочных покрытий. Лакокрасочные материалы, применяемые при окраске автомобилей. окраски деталей автомобиля с радиационно-химическим отверждением покрытий

  Вся электронная библиотека >>>

 Автомобильные кузова >>

 

Автомобилестроение

Автомобильные кузова


Раздел: Быт. Хозяйство. Строительство. Техника

 

Сушка лакокрасочных покрытий

 

 

Лакокрасочные материалы, применяемые при окраске автомобилей, образуют пленку в результате испарения растворителя (главным образом быстросохнущие, не содержащие масел, например, нитроцеллюлозы) пли вследствие окисления, конденсации и полимеризации пленкообразующего вещества (синтетические и маслосодержащпе материалы).

Испарение растворителей протекает при сравнительно низких температурах и ускоряется путем периодической смены насыщенного   парами   растворителя   окружающего   воздуха.

На ускорение процесса сушки влияет ряд факторов, наиболее важными из которых являются температура нагревания лакокрасочного слоя и степень подвижности воздуха. При неподвижном воздухе среда, непосредственно соприкасающаяся со свежеокрашенной поверхностью, насыщается парами растворителей, и процесс сушки замедляется. При беспрерывной смене воздуха пары растворителя уносятся с поверхности окрашенного изделия.

Значительное влияние на испарение растворителей оказывает и скорость воздушного потока в зоне сушки.

В зависимости от применяемых материалов, требований, предъявляемых к лакокрасочному покрытию, и организации производственного   процесса   окраски,   сушка   лакокрасочных   материалов может происходить в естественных условиях при температуре 18—23°С и при повышенной температуре, способствующей значительному ускорению процесса сушки.

Чтобы создать условии, при которых окрашенные поверхности автомобилей подвергаются .постоянному воздействию повышенных температур при интенсивном движении воздуха, сушку осуществляют в предназначенных для этой цели устройствах.

 

 

В зависимости от способа передачи тепла сушильные устройства, применяемые на авторемонтных заводах, могут быть трех основных типов: конвекционные, терморадиационные и терморадиационно-конвекцнонные. В конвекционных камерах передача тепла от его источника к изделию осуществляется нагретым перемещающимся воздухом. В терморадиационных камерах нагрев изделия происходит под действием инфракрасного излучения непосредственно от его источника и для передачи тепла активная среда не требуется. В термораднацнонно-конвекционных камерах нагрев изделия осуществляется комбинированным способом, это дает возможность получить равномерную сушку покрытия как наружной поверхности кузова, так и других необлучаемых его участков {панель приборов, внутренняя поверхность крышки багажника и т.п.). Терморадпацпонно-конвекционный способ сушки применяется также при сушке в одной камере окрашенных поверхностей изделий различной конфигурации и размеров (кабины и оперение грузовых автомобилей и т.п.).

Источником терморадиационного нагрева могут быть панели, нагреваемые газом, термоэлектронагреватели (ТЭНы), установленные в параболических отражательных рефлекторах, и зеркальные лампы накаливания с вольфрамовыми нитями. Волны; излучаемые этими источниками, находятся в инфракрасной области спектра, а длина этих волн зависит от температуры излучателя: чем ниже температура, тем больше длина волны. Опыты показали, что наиболее эффективными генераторами инфракрасных лучей являются газовые инжекционные горелки беспламенного горения, в которых источником инфракрасных лучей является керамическая насадка.

Газовоздушная смесь на выходе из отверстия керамической насадки (0,8—1,0 мм) дает реакцию мелкого взрыва: Вследствие этого насадка накаляется до 800—900°С, приобретает ярко-оранжевый цвет и излучает инфракрасные лучи длиной волны от 1 до 3 мкм. Лучи, падая на высушиваемую поверхность, проходят через Слой краски и возбуждают колебания молекул подложки (металла). В результате движения молекул возникает электромагнитное поле и подложка нагревается. Тепловые потоки идут в обратном направлении (навстречу инфракрасным лучам), и процесс сушки начинается от подложки к поверхности покрытия. Пленка краски высыхает с глубины, невысохшего слоя внутри покрытия не остается, корка на поверхности не образуется. Кислород имеет свободный доступ внутрь краски, а пары и газы имеют свободный выход наружу.

Управление камерой с газовыми горелками инфракрасного излучения автоматическое — с пульта, расположенного на расстоянии 5 м. Для отключения газа в аварийных случаях предусмотрена автоматическая система, которая срабатывает при падении или повышении давления газа, отсутствии электроэнергии, внезапной остановке вытяжного и приточного вентиляторов. Кроме того, пуск газа при невключенной системе электрозажнгания горелок невозможен. Расход газа каждой горелки (по данным трол-лейбусоремонтного завода) составляет 0,5 м3/ч, общий его расход — 65 м3/ч. Сушка 1 м2 поверхности стоит 0,16 коп. Температуру на поверхности кузова можно изменять от 100 до 150°С.

В настоящее время в крупносерийном и массовом производстве для окраски изделий применяются комплексы оборудования, включающие агрегаты подготовки поверхности под окраску, камеры окраски и сушки, объединенные транспортными средствами. Оборудование для таких комплексов в каждом конкретном случае должно удовлетворять ряду условий, специфичных для данной продукции и данного предприятия (габариты и масса изделий, конфигурация окрашиваемых поверхностей, программа выпуска, марки лакокрасочных материалов, наличие производственных площадей под оборудование, вид применяемой энергии н т. д.).

Для сушки окрашенных поверхностей кабин и оперения грузовых автомобилей институтом «Гипроавтотранс» разработаны две терморадиационно-конвекционные камеры; тупиковая (модель 8023) и проходная (модель 8018). Кабина подается в камеру на подвесном конвейере на специальной вращающейся подвеске. Корпус камеры представляет собой сварной каркас, обшитый с двух сторон стальным листом. Между листами проложена теплоизоляция. Конвенционно-рециркуляционная система предназначена для подогрева воздуха до температуры 60—70°С и принудительной подачи его по системе воздуховодов в нижнюю зону камеры; забор воздуха производится в верхней зоне.

Конвекционно-рециркуляционная система состоит из центробежного вентилятора с электродвигателем, калорифера, дросселя для регулирования количества выброса воздуха в атмосферу, гибких вставок и воздуховодов. Центробежный вентилятор смонтирован на впброизолпрующем основании.

Терморадиационная система предназначена для сушки изделия при повышенной температуре. Система состоит из отдельных панелей, расположенных вдоль камеры по всему поперечному периметру. Каждая панель состоит из сварного металлического корпуса и нескольких трубчатых электронагревателей, установленных в фокусе алюминиевых рефлекторов параболической формы, анодированных и электролитически отполированных. Для уменьшения теплопотерь в проходной камере установлены две воздушные завесы. Воздушный фильтр установлен только над входным проемом камеры. В целях безопасной работы в камере с обеих сторон предусмотрена система блокировки, которая автоматически отключает трубчатые электронагреватели при входе в камеру. Эти сушильные камеры имеют два режима сушки. Первый режим обеспечивает сушку поверхностей, окрашенных эмалями, высыхающими при температуре 60—70°С. Для получения в камере указанной температуры необходимо включить конвекшюнно-рециркуляцнонную систему и воздушную завесу, Второй режим (120— 140°С) обеспечивает сушку поверхностей, окрашенных синтетическими эмалями. Для получения в камере указанной температуры необходимо включить дополнительно терморадиационную систему. Температура в камере на этих режимах регулируется автоматически. Первый режим регулируется с помощью термопары, установленной в камере, и электромагнитного вентиля, установленного на паропроводе, идущем к калориферу. Второй режим регулируется также термопарой, установленной в камере над крышей кабины, и электронным потенциометром, установленным на пульте управления.

Для сушки кабин и оперения автомобилей МАЗ-500 на подвесном конвейере периодического действия после окраски ПКБ Главмосавтотранса разработана камера НР-6809/45  ( 90).

Корпус камеры сварной, обшит стальным листом. Между листами обшивки заложена теплоизоляция. Транспортные проемы корпуса закрываются на время сушки раздвижными двустворчатыми дверями 2, снабженными теплоизоляцией. Механизм привода дверей цепного типа, обеспечивающий синхронность открывания дверей.

На площадке 3 установлен агрегат 5 рециркуляции, состоящий  из  центробежного вентилятора  и электрокалорифера.  Воздух засасывается вентилятором через проем в крыше корпуса, нагнетается через калорифер по воздуховодам в нижнюю часть корпуса.

В связи с наличием теплоизолированных дверей воздушные завесы 4 ограждают лишь небольшую часть транспортного проема в месте прохода трассы конвейера. Пары растворителя удаляются в атмосферу через патрубок. Свежий воздух взамен удаленного засасывается в камеру через проемы, огражденные завесами.

Для сушки легковых автомобилей ГАЗ-24 «Волга» после окраски институтом «Гипроавтотранс» разработана камера (модель Л-112), которая представляет собой сборную конструкцию, состоящую из отдельных секций. Каждая секция состоит из каркаса, обшитого стальными листами, пространство между которыми заполнено теплоизоляционным материалом. Вентиляционные агрегаты для рециркуляции нагретого воздуха расположены на площадке над камерой. Для удобства и безопасности работы по обслуживанию вентиляционных агрегатов площадка имеет ограждение и лестницу.

Для регулирования количества выбрасываемого в атмосферу насыщенного парами растворителя воздуха и подачи в камеру чистого воздуха имеются дроссели. Для очистки поступающего из помещения воздуха служат фильтры.

Сушка окрашенных поверхностей автомобиля производится с помощью нагрева кузова автомобиля терморадиационными панелями, облучающими всю окрашенную поверхность. Терморадиационные панели представляют собой сварную раму, на которой смонтированы трубчатые электронагреватели с параболическими отражательными рефлекторами. Для регулировки температуры сушки в камере предусмотрены средства автоматики. Аппаратура управления терморадиационными панелями и вентиляторами сблокирована между собой, а также с дверями камеры.

Для терморадиационной сушки автобусов после окраски конструкторским отделом Гипроавтотранса разработан самоходный портал с повторными панелями.

В этом портале предусмотрены два режима работы — автоматический и ручной. При автоматическом режиме после включения кнопки «Пуск» включаются вентилятор и нагреватели боковых панелей и происходит сушка торца автобуса в течение 15 мин. Затем включается механизм поворота боковых панелей, которые разворачиваются для сушки боковин автобуса. После остановки механизма с помощью выключателя включаются механизм передвижения панелей, а также нагреватели верхней панели. Панели передвигаются до момента их выхода за пределы автобуса. Это положение фиксируется с помощью фотореле, затем вновь включается механизм разворота панелей для сушки другого торца автобуса. Фиксация панелей в крайнем положении после   разворота   производится   с помощью   конечного   выключателя. После сушки торца портал автоматически выключается. Схема управления порталом позволяет проводить сушку, начиная с любого торца автобуса. В автоматическом режиме выключение нагревателей возможно лишь при работающем вентиляторе. В случае необходимости частичной сушки автобусов нужные панели включают универсальным переключателем. Световая сигнализация свидетельствует о включении портала, работе в автоматическом или ручном режиме и о работе каждого нагревателя в отдельности.

Опыт работы показал, что в процессе эксплуатации отражатели в терморадиационных камерах покрываются слоем пыли, грязи и пленкой окиси, снижающими коэффициент отражения до 15—20%. В случае расположения сушильной камеры в непосредственной близости от окрасочной камеры поверхность отражателей покрывается также следами лакокрасочного материала, что ведет к резкому снижению отражательной способности рефлекторов, а следовательно, и КПД установки. Это приводит к нарушению технологических режимов сушки лакокрасочных покрытий и  к получению некачественной лакокрасочной  пленки.

В целях поддержания отражателей в надлежащем состоянии их необходимо периодически (не менее 2 раз в год) подвергать специальной электрохимической обработке для восстановления их первоначальной светотехнической характеристики. Параболические отражательные рефлекторы или своды обычно изготавливают из алюминия, который предварительно подвергается электрополировке. Для защиты поверхности алюминия от коррозии и стабилизации его светотехнических характеристик лаборатория НИИТЛа рекомендует покрывать отражающий свод кремнийорганическими или эпоксидными лаковыми пленками (КС-08, Э-4100, К-55), являющимися термостойкими материалами. Покрытия на основе указанных лаков выдерживают длительный нагрев без  заметного  изменения  своих спектральных  характеристик.

Существующие Системы автоматического регулирования температуры в терморадиационно-конвекционных сушильных камерах, применяемых на авторемонтных заводах, не обеспечивают равномерность облучения инфракрасными лучами всех поверхностей кузова, так как практически установить инфракрасные излучатели на одинаковом расстоянии от различных точек по конфигурации кузова весьма затруднительно.

Для устранения этого недостатка на 5-м Киевском авторемонтном заводе были проведены исследования и опытные испытания специально разработанной системы сушки распределением инфракрасных излучателей по различным точкам кузова в зависимости от цвета окраски, толщины наносимых слоев грунтовки, шпатлевки и краски. Были установлены периоды интенсивного выделения паров растворителя и разбавителя. Это дало возможность построить следующую систему регулирования процесса сушки.

Датчиком контроля установки кузова в камеру служит фотореле, которое состоит из головки МГ-10, электронного фотоусилителя и осветителя ОЛ-4. Фотоголовка и осветитель закреплены на противоположных стенках сушильной камеры таким образом, чтобы луч света от осветителя перекрывался кузовом, когда он находится в камере.

После установки кузова в сушильную камеру и закрытия шторки камеры сигнал от датчика включает силовую схему инфракрасных излучателей и включается реле времени, приводящее в действие систему автоматического регулирования процесса сушки.

При этом с помощью датчиков температуры, электронного моста и устройства регулирования интенсивности излучения контролируется температура расчетных точек нагрева конфигурации кузова и поддерживается оптимальная интенсивность излучения инфракрасных лучей. Одновременно блок реле времени обеспечивает управление и регулирование конвекционной установки по заданным фазам процесса сушки. В зависимости от степени полимеризации лакокрасочного покрытия и температурного режима обеспечивается корректировка времени сушки в блоке реле реохордом моста, датчиком отражения цвета и ручным задатчиком

В момент, когда процесс полимеризации лакокрасочного покрытия завершается, из камеры удаляется в атмосферу загрязненный воздух и подается звуковая сигнализация обслуживающему персоналу, после чего устанавливают последующий кузов для сушки и процесс повторяется.

В процессе опытной эксплуатации установлено, что экономия электрической энергии достигает 40%, а производительность сушильной камеры возрастает в 2 раза.

Указанная система автоматизации процесса сушки лакокрасочных покрытий кузовов легковых автомобилей может быть, иcпользована и для сушки лакокрасочных покрытий автобусов и кабин грузовых автомобилей.

Перспективным является метод радиационно-химического отверждения лакокрасочных покрытий (электронно-лучевой сушки), при котором время формирования покрытий сокращается до нескольких секунд. Преимущества этого метода в резком ускорении времени сушки, сокращении производственных площадей в 2—10 раз, снижении затрат энергии на сушку примерно в 10 раз, быстром (в течение нескольких минут) пуске установки, значительном улучшении качества покрытий.

Американский концерн «Форд» начал эксплуатацию первой промышленной линии окраски деталей автомобиля с радиационно-химическим отверждением покрытий. В настоящее время метод радиационно-химического отверждения применяют в основном при окраске  изделий сравнительно  простой  конфигурации.

В нашей стране работы в области радиационно-химического отверждения лакокрасочных покрытий ведутся в разных направлениях, в том числе в создании установок для отверждения покрытий на изделиях сложной    конфигурации,    разработке    оптимальной технологии     нанесения    лакокрасочных    материалов    и создании соответствующего оборудования для ее реализации.

Важное значение для охраны окружающей среды имеет внедрение на заводах сушильных камер с дожиганием паров растворителей. Принцип их работы основан на том, что образующиеся во время сушки лакокрасочных материалов растворители используются в качестве источника дополнительного топлива. При этом не только снижается пожаро- и взрывоопасное производства, но и предохраняется атмосфера от загрязнения. Камеры с дожиганием паров растворителей, разработанные Минским кон-структорско-технологичеекпм экспериментальным институтом автомобильной промышленности, применяются, в частности, на Минском и Белорусском автозаводах.

Ниже для примера приведены технологические схемы окраски кузовов  автомобилей   ВАЗ, «Москвич» и автобуса ЛиАЗ-677.

Процесс окраски кузовов на ВАЗе состоит из следующих основных операций: обезжиривания и фосфатпрования; нанесения первичного грунта методом электроосаждения, вторичного грунта электростатическим распылением, противошумной мастики пневматическим распылением; мокрой шлифовки поверхности грунтовочного покрытия; нанесения эмали автоматическим пневмораспылением. При использовании метода электроосаждення для грунтования кузовов тщательное удаление загрязнений и создание качественной фосфатной пленки приобретают особое значение. Для тех участков на «черном» кузове, которые поражены коррозией, предусмотрена обработка составом диоксидин (смесь водного раствора фосфорной кислоты и изопро-пилового спирта с добавкой ПАВ).

Основная обработка кузовов осуществляется в агрегате бон-деризации туннельного типа, состоящем из шести зон. В первых двух зонах кузов обезжиривают методами окунания и струйным. В первой зоне наряду со струйной обработкой кузов погружается в раствор до проемов окон с. целью наиболее эффективного обезжиривания скрытых сечений и труднодоступных мест в полу и крыльях. Во второй зоне кузова обрабатываются только струйным способом. Обезжиривание осуществляется щелочным моющим раствором концентрата КМ-1. После обезжиривания и промывки поверхность фосфатируется струйным способом с применением концентрата КФ-1.

Для ускорения процесса и улучшения кристаллической структуры фосфатного слоя в ванну при работе установки постоянно добавляется строго дозированное количество нитрита натрия в виде концентрированного (100 г/л) раствора в деминерализованной воде. Для уплотнения структуры пленки в фосфатирующий раствор вводится добавка сегнетовой соли. После фосфатирова-ния кузова тщательно промывают сначала водопроводной, затем деминерализованной водой.

В качестве первичного грунта применяется электрофорезная водоразбавляемая  грунтовка   ФЛ-093/133   (ТУ  640-889—74), которая наносится на предварительно обезжиренные и прошедшие фосфатирование кузова, обдуваемые сжатым воздухом для удаления пыли.

В качестве вторичного грунта применяется эпоксидная грунтовка ЭФ-083 (ТУ 6-10-880—74). Она обладает хорошими защитными свойствами и улучшает декоративные показатели комплексного покрытия кузова. Нанесение двух слоев этого грунта «мокрый по мокрому» осуществляется в окрасочной камере закрытого типа, которая состоит из трех зон: ручного распыления, электроокраски и растекания. В двух первых зонах температура воздуха за счет общезаводской системы кондиционирования поддерживается в пределах 18—20°С, в третьей она составляет 30—35°С. В зоне ручного распыления грунтуются труднодоступные участки кузова (внутренние поверхности, дверные проемы) пневматическими краскораспылителями. Грунтование наружной поверхности полностью автоматизировано и осуществляется во второй зоне способом электростатического распыления с помощью   установок   фирмы   «Ransburg».

Технологические параметры нанесения покрытия грунтовкой ЭФ-083 следующие: рабочая вязкость при 20°С по ВЗ-4—20—22с; растворитель РЭ-11В; температура сушки 145—150°С; длительность сушки 20 мин; толщина сухой пленки 40—50 мкм.

Для обеспечения хорошей адгезии и высокого декоративного вида покрывных слоев вся наружная поверхность загрунтованных кузовов подвергается мокрому шлифованию при помощи вибрационных башмачных машинок. Материал — водостойкая абразивная бумага № 320 и 360. Тщательно отшлифованные кузова промываются технической, затем деминерализованной водой, сушатся при 120—130°С в течение 4—5 мин и поступают на окончательную окраску синтетическими эмалями МЛ-197 (ТУ 6-10-888—72).

Эмали наносят пневматическим распылением в три слоя «мокрый по мокрому» автоматическими установками. Каждая из них состоит из одного робота для окраски горизонтальных поверхностей и двух — для вертикальных. Все установки объединены системой автоматики и программирования. Распознавание типа кузова производится с помощью фотоэлементов. Каждая установка имеет пультуправления и пульт подачи краски.

Окрашенные и предварительно выдержанные в камере растекания кузова поступают в трехсекционную камеру конвекционного типа. Технологический процесс заканчивается охлаждением кузова до температуры цеха и контролем ОТК.

Технологические параметры нанесения эмалевых покрытий следующие: рабочая вязкость при 20°С по ВЗ-4 20—24 с; растворитель смесь Р-197 и № 2; температура сушки 100—105°С; длительность сушки 30 мин; толщина сухой пленки 35—45 мкм.

Технологический процесс подготовки и окраски кузовов на АЗЛК состоит из следующих основных  операций:   обезжиривания   и   фосфатирования:   грунтования первым слоем электроосаждением: нанесения мастики на внутренние и внешние сварные швы, специальных противошумных битумных накладок, противошумной битумной мастики пневмораспылением; грунтования вторым слоем грунта электростатическим распылением; мокрой шлифовки; нанесения эмали автоматическим пневмораспылением.

Вторым грунтом служит подкрашь ГФ-571 (ТУ 6-10-636—74). Внутренние поверхности грунтуют одним слоем подкраши методом ручного пневмораспыления, наружную поверхность — двумя слоями «мокрый по мокрому» электростатическим распылением в специальной камере конструкции АЗЛК. Поскольку подкрашь ГФ-571 имеет недостаточную твердость, то для ее увеличения в краскозаготовительном отделении в материал вводится от 30 до 50% синтетической эмали МЛ-12. Такая смесь применяется для второго слоя, наносимого на наружную поверхность кузова.

Температура воздуха в камерах ручного и электростатического распыления поддерживается за счет кондиционирования в интервале 18—22°С, в тамбуре розлива — 30—35°С. Режим сушки второго грунта — 30 мин при И0°С.

До применения новых грунтов, не требующих шлифовки после, их нанесения, хорошая адгезия покрывных слоев эмали обеспечивается тщательной мокрой шлифовкой слоя грунта на части внутренней и наружной поверхности кузова. Шлифовка осуществляется Пневматическими машинками и вручную водостойкой абразивной бумагой № 5, а также абразивными сетками. Отшлифованные кузова промываются деминерализованной водой и после 5 мин сушки при 140°С и охлаждения до температуры цеха передаются на окончательную окраску.

Перед камерой удаления пыли кузова обдуваются сжатым воздухом и протираются натуральной замшей. Окончательно пыль удаляется в камере протиркой наружной поверхности марлей, смоченной лаком № 401. Затем кузова поступают в камеру окраски.

 

 

 ЭМАЛИ. НИТРОЭМАЛИ. Лакокрасочные материалы. Качество ...

Качество лакокрасочного покрытия зависит от состава пленкобразователя и способа сушки. В простейшем случае сушка покрытия является физическим: ...
bibliotekar.ru/spravochnik-58/42.htm

 

 Гидроизоляционное покрытие лакокрасочного типа следует наносить на ...

Если естественная сушка не обеспечивает требуемой влажности изоли-ремой поверхности, ... Гидроизоляционное покрытие, особенно лакокрасочного типа, ...
bibliotekar.ru/spravochnik-93-gidroizolyacia/66.htm

 

 Отделка деревянных изделий. Протравы. Шпатлевание, грунтование ...

Имеется несколько видов ускоренной сушки лакокрасочных покрытий: конвективная, терморадиационная, фотохимическая, электронно-лучевая. ...
bibliotekar.ru/spravochnik-47/10.htm

 

К содержанию:  Автомобильные кузова. Техническое обслуживание и ремонт

 

Смотрите также:

 

Автомобильные кузова - лимузин, комби, седан, хачбэк, купе, ландо ...

купе — не единственный тип автомобильного кузова, подвергающегося всевозможным модификациям. Среди «пострадавших» оказался универсал...
bibliotekar.ru/encAuto/30.htm

 

 Кузов автомобиля - хребтовая рама обладает большей жесткостью по ...

Подробнее о конструкции дверей и элементов кузова можно прочитать в книге В. К- Штробеля «Современный автомобильный кузов»
bibliotekar.ru/spravochnik-61/11.htm

 

 Автомобиль

Наиболее распространен среди легковых автомобилей кузов типа «седан». ... Кузов. У легковых автомобилей под капотом кузова помещается двигатель, ...
bibliotekar.ru/enc-Tehnika/13.htm

 

 Советские автомобили. Победа, Москвич, Запорожец, ВАЗ, Жигули ...

Большая часть машин (они назывались КИМ-10-50) имела закрытые двухдверные кузова, а небольшое количество автомобилей — открытые. ...
www.bibliotekar.ru/encAuto/45.htm

 

 Из чего делают кузова автомобилей. Кузов легкового автомобиля ...

Из чего делают кузова автомобилей. Ни в одном другом элементе легкового автомобиля не использовано так много разнообразных материалов, как в кузове. ...
www.bibliotekar.ru/auto3/41.htm

 

 Современный автомобиль. Классификация современных автомобилей

Все без исключения современные автомобили состоят из трех основных частей — двигателя, шасси и кузова — и классифицируются по общему объему цилиндров ...
bibliotekar.ru/encAuto/29.htm

 

 Грузовые автомобили, тракторы, пневмоколесные тягачи

По конструкции кузова различают автомобили общего назначения и специализированные. Автомобили общего назначения имеют кузов в виде неопрокидывающейся ...
bibliotekar.ru/spravochnik-62/9.htm

 

 Кузов и дополнительное оборудование. Автомобили-самосвалы. Прицепы

В грузовом автомобиле к кузову относятся: кабина для водителя и одного-двух пассажиров, капот, облицовка, крылья передних колес, брызговики задних колес и ...
bibliotekar.ru/auto-uchebnik/49.htm

 

 Как делают и испытывают легковые автомобили

Посмотрим, как делают легковые автомобили на московском автозаводе АЗЛК. ... Они устанавливают внутри кузова обивку, вставляют стекла и осветительные ...
bibliotekar.ru/auto3/4.htm

 

 Кузов легкового автомобиля. Назначение и классификация кузовов

По форме, конструкции и технологии изготовления кузова первых легковых автомобилей в значительной степени напоминали кареты, о чем свидетельствовали даже их ...
bibliotekar.ru/auto3/40.htm

 

Европейские малолитражки. Опель, Шкода, Татра, Ауди

У большинства современных легковых автомобилей кузова несущие, причем нагрузки приходятся на все блоки, составляющие «оболочку». ...
bibliotekar.ru/encAuto/42.htm

 

Американские автомобили - Даусенберг Паккард Кадиллак Линкольн Корд

Но этим не ограничивались восторги автомобилистов: «Даусенберг Модель J» получил автомобильный кузов, построенный Гордоном Бюригом...
bibliotekar.ru/encAuto/52.htm

 

 АВТОМОБИЛИ. Схемы шасси, механизмов, кузова

Если мотор можно образно назвать «сердцем» автомобиля, то в таком случае шасси, на которых крепятся все механизмы и кузов, — его «скелет». ...
bibliotekar.ru/encAuto/32.htm

 

 АВТОМОБИЛИ ДЕЛАЕ, ДЕЛЯЖ. Начало 50-ых – борьба в Европе за место ...

Специалисты-кузовщики «Хупера» создавали для его автомобилей поистине царские кузова. автомобиль Джовит Джевелин. «Джовит Джевелин». 1946 г. ...
bibliotekar.ru/encAuto/51.htm