Вся электронная библиотека >>>

 Архитектурные конструкции >>

 

Архитектура

Архитектурные конструкции


Раздел: Быт. Хозяйство. Строительство. Техника

 

Глава 15. Несущие остовы гражданских многоэтажных зданий

 

 

Стеновой остов

 

Как отмечено выше, стеновой несущий остов наиболее распространен при строительстве жилых многоэтажных зданий. Применяются все три системы, рассмотренные в § П. 1: с поперечными, продольными и с перекрестными стенами. Преимущественная строительная система — крупнопанельная.

Конструктивная система с поперечными несущими стенами. Наиболее употребителен узкий шаг поперечных стен (до 4,8 м). Первым крупнопанельным жилым домом повышенной этажности стал построенный в 1964 г. 12-этажный дом на ул. Чкалова в Москве. Экспериментальные многоэтажные крупнопанельные 17-этажные дома построены в 1966 г. на проспекте Мира и на Смоленском бульваре. Сооружение этих домов открывало новое направление в массовом строительстве домов повышенной этажности с применением крупнопанельных конструкций.

Внутренние стены и перекрытия выполнены из плоских железобетонных панелей. Панели поперечных стен в соответствии с величиной действующих усилий приняты толщиной 16 см, плиты перекрытия — толщиной 14 см ; размеры этих элементов соответствуют конструктивному шагу 3,2 м. Это позволило получить крупноразмерные плиты перекрытий, исключить промежуточные швы в пределах комнат и тем самым улучшить звукоизоляцию помещений. Основной узел сопряжения несущих конструкций — опирание плит перекрытий на внутренние несущие стены — решен в виде платформенного стыка. Наружные стены,—навесные панели из керам-зитобетона толщиной 32 см, длиной на две комнаты. Особенностью решения стен служит выполнение всех стыков между наружными панелями внахлестку, благодаря чему вертикальные стыки между панелями (представляющие наибольшую опасность с точки зрения протекания) дополнительно защищены балконными плитами. Выполнение стыков внахлестку также удачно решает проблему температурных деформаций наружных стен, так как исключает возможность раскрытия стыков при колебаниях температуры.

Конструктивное решение 25-этажного жилого дома на проспекте Мира является развитием принципов, заложенных в проектах построенных 17-этажных жилых домов.

 

 

Эти конструктивные принципы положены в основу начавшегося в 70-е годы массового строительства многоэтажных крупнопанельных жилых домов в нашей стране. В качестве примера типовых панельных домов повышенной этажности можно привести серию 17-этажных домов П-44. Серия включает: два шага поперечных стен (3,0 и 3,6 м); весь необходимый набор квартир; имеет прямые и угловые секции; поворотные вставки; варианты нежилых первых этажей.

Конструктивное решение домов этой серии: несущие поперечные стены толщиной 180 мм (межквартирные) и 140 мм (межкомнатные); наружные стены — трехслойные железобетонные панели «на 2 комнаты» толщиной 280 мм; перекрытия в виде плоских железобетонных плит размером на комнату толщиной 140 мм; теплый чердак, который служит для сбора воздуха из систем вентиляции, и утепленная железобетонная крыша с внутренним водостоком.

Стык внутренних стен и плит перекрытий (горизонтальный стык) — платформенный, в котором вертикальная нагрузка с панели на панель передается через опорные участки панелей перекрытий, опирающихся на половину толщины вертикальных несущих панелей.

Эти же принципы конструктивных решений положены в основу нового поколения крупнопанельных жилых домов различной высоты от 4 до 25 этажей, разработанных для строительства в тринадцатой и последующих пятилетках.

Из крупных панелей на основе изложенных принципов строят здания общежитий, больниц, гостиниц, т. е. здания, имеющие четкую, регулярную мелкоячеистую планировочную структуру.

Конструктивная система, построенная на широком шаге поперечных стен (6,3 м), впервые применена для здании повышенной этажности при строительстве 17-этажного дома на Юго-За-паде в Москве. Применение широкого шага открыло новые возможности «свободного» планировочного решения квартир: редкое расположение поперечных стен позволило получить разнообразные типы квартир в пределах шага, что создало предпосылки для более четкой унификации сборных железобетонных конструкций в жилищном строительстве; лучше осуществляется функциональное зонирование квартир (санитарные узлы располагаются около спален, а кухня—рядом с главной комнатой); создаются интересные архитектурно-конструктивные возможности в интерьере квартир (раздвижная перегородка пространственно объединяет столовую и обеденное место в кухне).

Поперечные несущие стены выполнены из плоских железобетонных панелей толщиной 20 см; перекрытия — из предварительно напряженных плоских плит толщиной 16 см.

Имеет свои особенности и решение наружных стен. Они навесные, увеличенной длины — до 7 ... 11 м. Лоджии выполняются навесными. Остов первого этажа выполнен каркасным. Аналогичная конструктивная система поперечных стен принята при строительстве 16-этажных жилых домов, построенных в Северном Чертанове и других районах Москвы. Шаг поперечных стен принят 7,2 м, что дополнительно расширило планировочные возможности.

Основными недостатками конструктивной системы с широким шагом поперечных несущих стен по сравнению с конструктивной схемой с узким шагом, являются повышенная на 25... 30 % трудоемкость строительства, увеличенный на 15... 20 % расход стали и цемента; это ограничивает использование широкого шага в строительстве.

Конструктивная система с продольными несущими стенами. Попытки освободить внутренние пространства от несущих конструкций привели к использованию системы с тремя продольными несущими стенами. Пространственная жесткость таких зданий обеспечивается совместной работой продольных и поперечных межсекционных стен, а также перекрытий. Перекрытия из многопустотных настилов с замо-ноличенными стыками представляют собой горизонтальные диски жесткости, передающие ветровые нагрузки на стены лестничных клеток.

Принципиально такое расположение несущих конструкций с пролетами 5,4 ...6м в наибольшей мере освобождают площадь дома от внутренних стен. Однако это решение вступает в противоречие с конструктивной целесообразностью: при однослойных конструкциях ограждений, выполненных из керамзитобетона, предельная высота дома, определяемая прочностью материала и технико-экономическими показателями, ограничивается девятью этажами.

Наружные керамзитобетонные стены выполняются в этом случае толщи-, ной 40 см, из керамзитобетона класса В 5 плотностью 1200 кг/м3. Продольная внутренняя стена из бетонных панелей толщиной 27 см. При строительстве кирпичных и блочных жилых домов эта же конструктивная система применяется высотой до 12 этажей.

Конструктивная система с перекрестными несущими стенами в зданиях повышенной этажности нашла ограниченное применение и это не случайно. При наличии поперечных несущих стен нецелесообразно устраивать и фасадные панели несущими ради опирания на них плит перекрытий. Такое решение имеет смысл только для небольших зданий до 6 ... 9 этажей. Для более высоких зданий логично стремление к всемерному облегчению наружных стен, используя полностью для за-гружения плитами только внутренние (с опиранием по трем сторонам, включая внутреннюю продольную). При высоте зданий более 10... 12" этажей решение с навесными наружными стенами является оптимальным.

Несущий остов каменных зданий. Дома с несущими каменными стенами пока еще составляют значительную долю в жилищно-гражданском строительстве городов, хотя и постепенно вытесняются индустриальными и прежде всего крупнопанельными системами.

Несмотря на трудоемкость ручной кладки, каменные конструкции будут применяться в строительстве различных зданий и сооружений, в том числе жилых и общественных, благодаря архитектурным преимуществам и эксплуатационным достоинствам.

Каменные стены здания возводят из глиняного и силикатного кирпича, керамических пустотелых блоков, из искусственных и естественных камней правильной формы на известково-песчано-цементном или песчано-цементном растворах. Различают камни для «одноручной» кладки: кирпич (глиняный и силикатный, полнотелый и пустотелый) массой до 4,5 кг и камни для «двухручной» кладки — керамические пустотелые камни плотностью до 1200 кг/м3, из автоклавного ячеистого бетона плотностью до 800 кг/м3. Камни для двухручной кладки имеют массу 8... 16 кг. Приемы кладки стен см. разд. П.

Для улучшения технико-экономических и теплотехнических показателей кирпичные стены выполняют из эффективных облегченных кладок, также рассмотренных в разд. П. В облегченной кладке возводят верхние 3 ... 5 этажей.

Системы несущих остовов многоэтажных каменных зданий не отличаются от рассмотренных выше для панельных зданий: употребляются несущие остовы с продольными или поперечными несущими стенами, смешанные системы с опиранием перекрытий на продольные и поперечные стены, комбинированные системы с несущими наружными стенами и внутренним каркасом — неполный каркас, а также каркасные схемы с самонесущими каменными наружными стенами.

При поперечных несущих стенах продольные каменные стены — самонесущие—выполняют только функции ограждающей конструкции. Кроме того, продольные наружные стены в этом случае являются элементами жесткости, обеспечивая вместе с лестничными клетками продольную устойчивость несущего остова. Пространственная жесткость здания обеспечивается надежным соединением продольных и поперечных стен в местах их пересечения и связью стен с перекрытиями.

Свободная длина продольных стен в пределах между поперечными связями по нормам СНиПа при сборных железобетонных перекрытиях может доходить до 48 м.

Устойчивость зданий при продольных несущих стенах обеспечивается поперечными стенами — торцовыми, межквартирными, а в некоторых случаях — специальными поперечными стенами жесткости.

Неполный каркас применяется в целях экономии стеновых материалов. Неполный каркас используют также при наличии в нижних этажах магазинов и других предприятий обслуживания населения, планировка которых не допускает устройства часто расположенных стен. При неполном каркасе панели перекрытий опираются на ригели, уложенные по колоннам каркаса.

Каменные материалы, обладающие большой плотностью, имеют высокую теплопроводность, а поэтому наружные стены по теплотехническим соображениям приходится устраивать значительной толщины — от 38 до 77 см.

Толщина стен в нижних этажах домов выше 6 этажей увеличивается для обеспечения необходимой несущей способности, а в некоторых случаях для этой цели в нижних этажах устраиваются специальные местные утолщения стен (пилястры) или их усиливают железобетоном, работающим совместно с каменной кладкой (так называемая «комплексная кладка»).

Повышение несущей способности каменных стен и столбов может быть также достигнуто путем применения в нижних этажах материалов повышенной прочности и армированием швов кладки горизонтальными сетками из проволоки диаметром 4 ... 5 мм.

Толщина несущих внутренних стен принимается в нижних этажах 640 мм (2,5 кирпича) и 770 мм (3 кирпича), а в верхних этажах — 380 мм. (1,5 кирпича). Толщина наружных несущих стен в нижних этажах 640... 770 мм, в верхних этажах для климатических условий средней полосы, например, Москвы,— из пустотелого кирпича или керамических камней толщиной 510 мм.

Декоративные свойства кирпичным стенам придают устройством фасадного ряда из лицевых кирпичей или керамических камней с расшивкой швов либо облицовкой закладными керамическими или бетонными плитами, которые устанавливают по ходу кладки. Для уникальных зданий применяют облицовку плитами естественного камня.

Венчающую часть каменной стены — карниз или парапет — решают в соответствии с принятой в проекте конструкцией крыши и системой водоотвода (наружного или внутреннего).

Междуэтажные перекрытия многоэтажных зданий с каменными стенами выполняют из сборных железобетонных многопустотных плит. Остовы каменных зданий высотой 10 ... 14 этажей обычно решаются по принципу стенового остова с неполным каркасом, с плитами перекрытий, опирающимися на наружные кирпичные стены и на продольные ригели каркаса.

Определенное достоинство такого конструктивного решения состоит в исключении сильно нагруженной внутренней кирпичной стены, что снижает трудоемкость строительства и создает возможности более гибких планировочных решений. Такие решения принимались в ряде случаев для домов высотой до 14 этажей. Дальнейшее повышение этажности экономически нецелесообразно, так как требует увеличения толщины наружных кирпичных стен для повышения их несущей способности. Поэтому пределом целесообразности применения конструктивной схемы с несущими (обычно продольными) кирпичными стенами следует считать 14 этажей.

Многоэтажные крупноблочные здания повторяют конструктивные схемы кирпичных домов.

Наружные стены выполняют из легкобетонных блоков с двухрядной разрезкой, в системе которой основными являются простеночные блоки и блоки-перемычки. На глухих (безоконных) участках стен вместо перемычек применяются поясные блоки. Толщину легкобетонных блоков наружных стен принимают 400, 500, 600 мм в зависимости от климатических условий строительства. Внутренние стеновые блоки выполняют из тяжелого бетона с вертикальными круглыми пустотами толщиной 400 и 500 мм в зависимости от высоты дома, т. е. от величины действующих усилий.

В местах пересечений внутренних и наружных стен обеспечивается перевязка поясных блоков и свариваются закладные стальные детали блоков. Для обеспечения надежной пространственной работы здания выполняют анкеровку перекрытий в стенах.

По уровню индустриальности крупноблочные системы занимают промежуточное положение и являются как бы переходными между кирпичными и крупнопанельными. В перспективе по мере развития базы крупнопанельного домостроения блочные конструкции уступят место более индустриальным и совершенным — крупнопанельным системам.

Выбор конструктивных систем жилых домов повышенной этажности. Сложность экономического сопоставления рассмотренных зданий, выполненных по различным конструктивным системам, определяется влиянием целого ряда факторов — различием объемно-планировочных решений, выбором материалов и конструкций для отдельных элементов, индивидуальным подходом того или иного проектировщика к конструированию элементов. Влияние на стоимость только планировочных факторов может достигать 20 %. Для зданий высотой до 16... 17 этажей среди строительных систем — крупноблочной, каркасно-панельной и крупнопанельной — преимуществами по основным показателям обладает крупнопанельная. Наиболее решительно в пользу панельных домов говорят показатели трудоемкости, которая оказывается для панельных домов в 2,5 ... 3 раза ниже, чем для каркасных.

Приведенные показатели обусловливают целесообразность для 16 ... 25-этажных жилых домов бескаркасных несущих остовов.

Исследования показывают, что наиболее экономичными типами зданий по расходу стали, цемента и бетона, по затратам труда и стоимости являются крупнопанельные дома с конструктивной системой в виде поперечных несущих стен, расположенных с узким шагом. Именно поэтому такая система получила наибольшее распространение в строительстве.

Повышение этажности крупнопанельных домов от 5 до 9, затем до 12 и, наконец, до 17 и 25 этажей в пределах единой конструктивной системы не приводит к резкому увеличению расхода материалов и повышению трудоемкости.

Новые направления развития многоэтажного индустриального домостроения. Как показывает практика строительства панельных домов повышенной этажности, обычные панельные конструкции могут применяться в домах не выше 25 этажей. Уже при такой высоте в конструкциях панельных домов возникают дополнительные и довольно значительные усложнения, связанные с трудностями обеспечения пространственной жесткости.

Наиболее целесообразный метод повышения жесткости зданий — компоновка плана панельного дома с развитыми на всю его ширину поперечными стенами, которые в этом случае будут обладать достаточно высокой жесткостью и в зданиях высотой до 16... 17 этажей относительно легко воспринимать горизонтальные нагрузки.

Другое направление в поисках новых конструктивных решений панельных зданий большой этажности также связано с применением монолитного железобетона. Одна из возможных конструктивных схем представляет собой монолитный железобетонный ствол, из которого «выпущены» на нескольких уровнях мощные железобетонные консольные полые плиты, являющиеся как бы платформами для опирания домов-блоков любой панельной конструкции.

Разновидность этой системы — сборно-монолитная железобетонная конструкция, в которой пространственная система диафрагм в виде ядра жесткости выполняется в монолитном железобетоне (например, в той же подвижной опалубке) и к этому ядру «привязывается» сборная панельная конструкция, работающая здесь только на вертикальные нагрузки. Панельные дома такой конструкции могут возводиться высотой до 30... 35 этажей.

Методы типизации в крупнопанельном домостроении. На первом этапе крупнопанельного домостроения объектом типизации был типовой жилой дом. Это привело к монотонности, к невозможности достичь разнообразия в архитектуре застройки. Следующим методом стал блок-секционный, в котором законченным объектом типизации являлись блок-секции, из набора которых создавалась объемно-пространственная композиция застройки. Для разнообразия композиционных решений разработаны блок-секции широтные и меридиональные, прямые и угловые, со сдвижкой в плане, поворотные вставки и т. п. Этот метод получил наибольшее распространение в массовом строительстве в нашей стране.

Поиски разнообразия в индивидуальном строительстве привели к разработке блок-квартирного метода, в котором объектом типизации являлась квартира. Однако он не нашел практического применения в связи с нестабильностью заводского производства деталей и необходимостью в каждом случае разрабатывать, по существу, индивидуальные  проекты   панельных домов.

Новым методом явился разработанный в Моспроекте № 1 метод компоновочных объемно-планировочных элементов (КОПЭ), в котором объектом типизации стали фрагменты (конструктивно-планировочные ячейки) жилой секции высотой от фундамента до крыши, способные по определенным правилам блокироваться с другими аналогичными фрагментами системы, создавая тем самым различные по композиционным, демографическим и другим условиям объемно-планировочные решения жилых домов высотой 18... 22 этажа

Достоинством метода является высокая степень повторяемости типовых индустриальных изделий благодаря жесткой унификации планировочных параметров в различных фрагментах и в таких элементах здания, как лестнично-лифтовые узлы, конструкции нулевых циклов, чердака и т. п.

Метод предполагает открытую систему типизации фасадных панелей, создавая тем самым дополнительные средства для разнообразия архитектуры застройки.

Конструкции несущих стен и узлы опирания перекрытий. Наиболее рациональными конструкциями несущих стен с позиций всего комплекса требований — прочностных, технологических, экономических — являются поперечные стены из плоских несущих железобетонных панелей. Это решение стало, по существу, единственным и для зданий повышенной этажности. В настоящее время плоские панели для зданий высотой 9 ... 12 этажей выполняются толщиной 16 см. Такая толщина продиктована не только условиями прочности, но и требованиями звукоизоляции от воздушного шума.

Можно рекомендовать увеличение толщины панелей межквартирных стен до 18 см. При повышении этажности домов с узким шагом, например до 16... 17 этажей, переход на толщину стен 18 см определяется не только условиями звукоизоляции, но и прочности, а также противопожарными требованиями. При больших нагрузках, например в системах с широким шагом несущих стен, в домах высотой 16 этажей и более целесообразно увеличить толщину поперечных стен до 20 см.

За рубежом в большинстве случаев внутренние стены также применяются в виде плоских панелей размером на комнату из бетона класса В20 толщиной 15 ... 20 см.

Панели внутренних стен подразделяют на сплошные (беспроемные), с проемами и с разновидностью — типа «флажок». В гранях дверных проемов устанавливают деревянные пробки для крепления дверных коробок. Для устройства каналов для скрытой сменяемой электропроводки в панель закладывают пластмассовые трубы. Применяется также более простая бесканальная электропроводка в специальных пластмассовых плинтусах.

Передача вертикальных усилий в горизонтальных стыках между несущими панелями представляет наиболее сложную задачу крупнопанельного строительства.

В практике нашли применение четыре основных типа соединений:

платформенный стык, особенностью которого является опирание перекрытий на половину толщины поперечных стеновых панелей, т. е. ступенчатая передача усилий, при которой усилия с панели на панель передаются через опорные части плит перекрытий;

зубчатый стык, представляющий модификацию стыка платформенного типа, обеспечивает более глубокое опирание плит перекрытий, которые наподобие «ласточкина хвоста» опираются на всю ширину стеновой панели, а усилия с панели на панель передаются через опорные части плит перекрытий; контактный стык с опиранием перекрытий на выносные консоли и непосредственной передачей усилий с панели на панель;

контактно-гнездовой стык с опиранием панелей также по принципу непосредственной передачи усилий с панели на панель и опиранием перекрытий через консоли или ребра («пальцы»), выступающие из самих плит и укладываемые в специально оставленные в поперечных панелях гнезда.

Обобщение опыта применения различных конструктивных решений несущих стен и узлов опирания перекрытий позволяет рекомендовать при создании новых типов зданий следующие конструкции.

Основным типом узла опирания перекрытий на несущие стены продолжает оставаться платформенный стык — наиболее простой в выполнении и достаточно надежный при высоте панельных домов в пределах 25 этажей.

Основным решением несущих стен по-прежнему будут оставаться плоские железобетонные панели. В целях повышения эксплуатационных звукоизолирующих качеств рекомендуется увеличить толщину панелей до 18 см, что одновременно позволит применять их для домов высотой 16... 18 этажей.

 

 

 Основные элементы и конструктивные схемы зданий

В зданиях с полным каркасом (5, а) несущий остов состоит из колони и ригелей, ... используемого для крепления оконных переплетов 12 и стеновых ограждающих ...
www.bibliotekar.ru/spravochnik-20/2.htm

 

 К основным конструктивным элементам гражданских зданий относятся ...

По конструктивной схеме несущего остова здания подразделяются на бескаркасные, ... одна внутренняя) наружные стеновые панели делают трехслойными из тяжелого ...
bibliotekar.ru/spravochnik-30/2.htm

 

 СТРОИТЕЛЬСТВО С ПРИМЕНЕНИЕМ ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ И КОНСТРУКЦИЙ

В домах с тремя продольными несущими стенами наружные стеновые панели делают ... Несущий остов промышленного здания при значительных нагрузках от несущих ...
bibliotekar.ru/spravochnik-70-3/59.htm

 

К содержанию книги:  Архитектурные конструкции

 

Смотрите также: