Вся библиотека >>>

Содержание книги >>>

  

 

Учёба. Образование

 Техническое творчество


 Издательство ЦК ВЛКСМ «Молодая Гвардия» 1955 г.

 

Проектирование летающих моделей

 

 

Проектирование летающих моделей планера, а. тем более самолета является ответственной и сложной задачей. Ответственной потому, что в полете ошибка конструктора может вызвать гибель или поломку модели, в которую было вложено много труда. Сложность же задачи заключается в том, что летающая модель имеет свои специфические особенности полета.

Кроме того, модель должна обладать хорошей устойчивостью, так как весь ее полет от взлета до посадки никем не управляется.

Но задача конструктора, который изготовил и запустил модель, добиться того, чтобы о«а не только держалась в воздухе, но и подчинялась определенным его желаниям, обладала хорошей устойчивостью и достаточной прочностью всех частей при возможно меньшем весе.

Если первые летающие модели строились на основании изобретательской интуиции, без точного знания сил и законов, которым подвержена модель, то в настоящее время теория и практика авиамоделизма дают возможность конструктору не только заранее знать летные свойства модели, но и те силы, которые действуют и на отдельные ее части и на всю модель в целом.

Как известно, силами, приложенными к модели, являются: сила тяги винта; сила веса и аэродинамическая сила, или сила сопротивления воздуха, получающаяся от действия последнего на движущуюся модель.

Величина, направление и точки приложения указанных выше сил зависят от многих факторов. Так, например, аэродинамическая сила зависит от формы и размеров отдельных частей модели и от ее скорости; сила тяги при данном моторе — от формы, диаметра и шага винта, а сила веса — от размеров и конструкции отдельных частей, а также от материала, из которого эти части изготовлены.

Управлять этими факторами в известных пределах может сам конструктор.

В настоящее время авиамодельная техника выдвинула ряд специфических требований к каждому классу и типу моделей. Задача руководителя кружка — добиться, чтобы юный авиамоделист-конструктор не слепо копировал хорошо летающие модели, а грамотно проектировал новые, свои модели, придерживаясь этих требований.

Руководитель кружка должен помнить, что для грамотного проектирования, а затем постройки летающей модели кружковцу нужно иметь понятие об основных аэродинамических силах — подъемной силе и лобовом сопротивлении — и о том, что требуется для их изменения в, ту или иную сторону.

Не менее важно для юных авиамоделистов при проектировании модели уяснить работу мотора и воздушного винта, без чего невозможно добиться наилучших результатов в использовании развиваемой мотором мощности, а винтом — тяги.

Наконец при проектировании и конструировании модели юному конструктору нужно уметь заранее определить ее будущий вес и точку приложения силы веса (центр тяжести) . Если этого не сделать, построенная модель не взлетит или окажется неустойчивой. Поэтому руководитель должен внимательно следить за работой авиамоделистов и вовремя внести соответствующие исправления.

Определение веса летающей модели потребует от конструктора умелого обращения со статистическим материалом.

Ни одна модель, как бы замечательно она ни была задумана, не будет хорошо летать, если ее сильно перетяжелить. Слишком легкие модели, так же как и очень тяжелые, летают плохо. Правда, на практике редко кто из авиамоделистов строит слишком легкие модели. Перетяжеляют же свои модели очень многие. Чаще всего это происходит у начинающих моделистов из-за того, что они не знают границ веса модели. Между тем выдержать заданный вес и определить необходимый вес очень просто.

Опытные авиамоделисты, проектируя и строя свои модели, стремятся максимально облегчить конструкцию модели, чтобы большая доля полетного веса приходилась на ре-зиномотор или бак с горючим. Поэтому, изготовляя модель, надо тщательно взвешивать ее части, стараясь при той же прочности сделать их более легкими.

В процессе работы допустимы небольшие отклонения, то-есть одна часть модели может быть сделана легче, а другая тяжелей. В общей же сумме Бес модели должен соответствовать процентному отношению, указанному в таблице.

Занятия по проектированию модели начинают с изыскания схемы и ее рациональных размеров. В настоящее время для каждого класса и типа моделей существуют установленные опытным путем некоторые наиболее выгодные соотношения размеров частей, их формы и компоновки.

Составляя проект летающих моделей, необходимо придерживаться определенного порядка. Это приучает юных техников к последовательности и плановости в работе. Вот в каком порядке осуществляется проектирование модели:

1.         Выбор мотора, если это модель самолета.

2.         Выбор схемы.

3.         Выбор основных размеров.

4.         Выбор наиболее выгодных аэродинамических форм и сечений.

5.         Определение веса модели и ее частей.

6.         Конструирование отдельных частей и их крепление.

7.         Определение размеров и сечения деталей в зависимости от действующих на них

нагрузок.

8.         Изготовление и компоновка макета модели.

9.         Вычерчивание   рабочего   чертежа модели

Прежде чем авиамоделисты приступят к составлению эскизного проекта летающей модели, им необходимо четко и ясно указать на основные требования, которые предъявляются к будущим моделям, и объяснить, каким образом выполнить эти требования.

Основным условием при проектировании модели являются аэродинамические требования: наименьшее сопротивление формы профиля крыла, оперения, фюзеляжа, интерференции и пр.; получение наибольшего коэффициента подъемной силы, хорошая устойчивость модели на всех режимах полета.

Особенно важную роль при проектировании модели играют такие требования, как скороподъемность, дальность, продолжительность, скорость полета, скорость снижения и др. Именно эти требования и определяют основное назначение модели и ее тип.

Простейший способ определения наиболее выгодных размеров основан на зависимости отдельных параметров модели от одного главного — размаха крыла. Этим способом обычно пользуются руководители авиамодельных кружков, когда обучают моделистов проектировать и конструировать свои первые модели. Порядок проектирования может быть следующим:

1.         Выбор размаха крыла и удлинения.

2.         Выбор основных размеров модели.

3. Определение площадей: крыла, стабилизатора, киля, миделя фюзеляжа.

4.         Выбор профиля крыла и оперения.

5.         Определение веса модели и нагрузки.

6.         Расчет воздушного винта.

7.         "Выбор шасси и определение конструкции модели.

При работе с кружковцами руководитель должен учитывать, что указанные на схемах размеры являются средними. Поэтому во время проектирования, можно допускать небольшие — 10— 15% —отклонения как в сторону уменьшения, так и в сторону увеличения тех или иных рекомендуемых размеров.

Прежде чем приступить к определению размеров и составлению эскизного проекта летающей модели, необходимо определить схему модели. Наиболее распространенной схемой современных моделей является сво-бодяонесущий моноплан с верхним расположением крыла.

Но монопланная схема бывает и с низко расположенным крылом. Это должен учитывать руководитель кружка, так как юные авиамоделисты часто задумываются, какую же из них лучше выбрать. Руководитель должен разъяснить авиамоделистам преимущества той и другой схемы.

При верхнем расположении крыла достигается большая поперечная устойчивость модели, а также в некоторой степени улучшается и спиральная устойчивость.

Монопланная схема с верхним расположением крыла применяется для всех летающих моделей парящего и рейсового типа. Крыло, расположенное сверху фюзеляжа, проще сделать подвижным, оно упрощает конструкцию, регулирование модели, уменьшает ее вес и делает модель, более живучей.

Конструкции с низким и. средним расположением крыла более пригодны для скоростных моделей, летающих на корде или по прямой. Схема модели с низко расположенным крылом облегчает балансировку в продольном отношении, так как центр тяжести модели легче совместить с линией тяги винта. Для скоростной модели самолета это особенно важно, ибо улучшается ее продольная устойчивость.

Остановимся на некоторых основных вопросах проектирования летающих моделей.

Модель планера. Основным критерием в оценке хорошо летающей модели планера является минимальная скорость ее снижения. Такая модель обладает наибольшей возможностью парения даже в слабых восходящих потоках, а значит, может набрать большую высоту и покрыть значительное расстояние.

Минимальная скорость снижения модели, как известно, зависит от ее аэродинамического качества и скорости полета. Чем выше качество модели и меньше горизонтальная скорость полета, тем меньшей будет скорость ее снижения.

Скорость же полета зависит от нагрузки на несущую поверхность. Нагрузка в авиамоделизме измеряется в граммах на квадратного дециметр площади крыла, включая и площадь стабилизатора. В последние годы для уменьшения нагрузки стабилизатор модели стали делать несущим, то-есть его профиль делается или плоско-выпуклым или вогнуто-выпуклым и устанавливается под некоторым положительным углом атаки в 1—2°.

На качество крыла влияет его форма в плане. Лучшим крылом в плане считается элипсовидное, на практике же больше всего встречается прямоугольное крыло с закругленными концами и удлинением 8—10. Такое крыло наряду с хорошими аэродинамическими данными наиболее выгодно для устойчивости модели в полете. В некоторых случаях крылу придают форму трапеции, но такое крыло сложнее выполнить, так как приходится рассчитывать каждую нервюру крыла в отдельности.

Стабилизатору следует придавать такую же прямоугольную форму, но с меньшим, чем у крыла, удлинением — 4—6.

"Киль обычно делается одновременно с фюзеляжем, а его форма выбирается самим конструктором. При этом необходимо учитывать, что более высокий киль эффективнее выполняет свои функции. -Высота киля поэтому берется в 2—2,5 раза больше его средней ширины.

Форма фюзеляжа (вид сбоку) может быть самой разнообразной. А сечение его в большинстве случаев делается многогранным, переменным. Минимальная площадь наибольшего поперечного сечения фюзеляжа для модели планера должна быть:

где: SKp — площадь крыла, a S2O — площадь горизонтального оперения.

При проектировании модели планера необходимо обращать внимание и на устойчивость модели. Для летающей модели наиболее опасна спиральная неустойчивость. При запуске моделей иногда бывает так, что хорошо отрегулированная, на первый взгляд, модель, запущенная с длинного леера на высоту и предоставленная сама себе, вдруг от случайного порыва ветра делает произвольный разворот в какую-нибудь сторону и резко теряет высоту. Такой разворот происходит от различных углов атаки на концах крыла или перекоса киля. Но чаще всего он объясняется спиральной неустойчивостью данной модели.

Причина такой неустойчивости — чрезмерно большая площадь киля при малом поперечном угле V крыла, и под действием порыва воздуха модель кренится и начинает скользить в сторону опущенного конца крыла. Если модель спирально устойчива, то, изменив резко направление полета, она сама восстанавливает горизонтальное положение. Если же модель спирально неустойчива, то начавшееся скольжение( ее увеличивается. При этом модель переходит в нисходящую спираль со скольжением, скорость полета ее все более увеличивается, а радиус разворота уменьшается.

Наиболее эффективным способом устранения спиральной неустойчивости модели в полете явится уменьшение площади киля. На практике часто приходится устранять это явление, обрезая киль с верхнего его конца.

На рисунке 3 приводятся схемы определения характерных размеров схематической и фюзеляжной моделей планера, которые рекомендуются нами для начинающих авиамоделистов. Размеры всех частей моделей даются в определенной зависимости от одного главного размера — размаха крыла, который берется в среднем для схематической модели 1,2 м, для фюзеляжной 2,0 м.

Для крыла фюзеляжной модели планера мы рекомендуем профиль с относительной толщиной, составляющей 10—12% длины хорды крыла (рис. 4).

Модель самолета с резиновым мотором. Наиболее интересной и доступной для изготовления моделью самолета является резиномоторная модель самолета высотнопарящего типа.

К проектированию и конструированию резиномоторной модели самолета предъявляются очень серьезные требования: наряду с максимальными возможностями набора высоты при работающем моторе, а затем хорошим планированием и даже парением в термических потоках воздуха она должна быть особенно устойчивой, а также и легкой.

Главная трудность проектирования резиномоторной парящей модели заключается в ее регулировании, так как воздушный винт значительного диаметра (доходит до 50%) и мощный резиномотор (до 60% веса от всей модели) создают в начале ее полета большой избыток тяги, а отсюда возникает опасность «взмывания» модели и крутой вираж от реактивного момента винта в обратную сторону его вращения.

Эта опасность устраняется при регулировании модели поворотом оси винта в обратную сторону вращения на 2—4° и наклоном оси вниз на 5—8°, а также частично сравнительно большой площадью стабилизатора.

Форма крыла в плане берется прямоугольная, с закругленными концами и со значительным поперечным углом V — до 12°. Если же У делается тройной, тогда распределение углов будет другое — в центре 6—8°, а на полуразмахе 16—18°.

Для улучшения аэродинамических качеств на современных парящих моделях делаются шасси, убирающиеся при взлете. Наиболее распространенной схемой в настоящее время является схема модели с одноколесными шасси в передней, части и двумя хвостовыми костылями. Функции хвостовых костылей в данном случае выполняют кялн (шайбы), размещенные на концах стабилизатора.

Когда модель стоит на земле, стойка (или стойки) такого шасси удерживается в выпущенном состоянии силой веса модели. После взлета стойка шасси вначале под влиянием сопротивления воздуха, а позднее от натяжения резинки отклоняется назад. В убранном состоянии стойка шасси удерживается силой натяжения той же резинки.

Размах крыла резиномоторной модели в среднем берется 1,2 м. Иногда для большей устойчивости крыло модели крепится к фюзеляжу высоко на специальном пилоне или на подкосах. Наиболее распространенный способ крепления крыла — это крепление на верхней части фюзеляжа с помощью небольшой надстройки, которое дает возможность легко передвигать крыло во время регулировки. Простейшим и наиболее практичным способом соединения подвижного крепления крыла с фюзеляжем является крепление с помощью резинки, которая охватывает фюзеляж поперек и прижимает крыло. Крылья, прикрепленные резинкой, редко ломаются при грубых посадках и легко передвигаются по фюзеляжу при регулировании модели.

Продолжительность моторного полета и максимальная высота модели зависят от соотношения веса резинового мотора к весу конструкции. Вес резинового мотора должен составлять не менее 35% от общего веса модели. Наличие такого мощного мотора вызывает необходимость делать воздушные винты большого диаметра, с широкими лопастями (до 14% от диаметра) и вогнутым профилем. В данном случае летные качества модели зависят от винта с максимальным кпд.

Воздушный винт представляет собой наиболее ответственную деталь летательной машины, так как является почти единственным аппаратом, создающим для летающей модели тягу в полете. Небольшие изменения кпд винта резко отражаются на летных свойствах модели самолета. Поэтому качеству изготовления винта следует уделить самое серьезное внимание.

Желательно, чтобы лопасти воздушного винта во время планирующего полета модели после раскручивания мотора складывались вдоль фюзеляжа или чтобы винту был обеспечен свободный ход (винт не должен соединяться с резиновым мотором). Все это улучшает аэродинамическое качество модели.

Основное требование, предъявляемое к моторному полету высотной модели, —максимальный набор высоты, а к планирующему — минимальная скорость снижения. Оба эти фактора находятся в прямой зависимости друг от друга, и поэтому при проектировании модели их приходится решать совместно. Так, например, на летные качества модели в обоих случаях полета влияет профиль крыла и стабилизатора. Для крыла профиль нужно брать тонкий (6—8%), вогнуто-выпуклой формы, максимально изогнутый в передней трети его толщины. Для стабилизатора — плоско-выпуклый той же толщины (рис. 6).

Не менее важное значение в проектировании резиномоторной модели имеет ее прочность. Модель должна быть легкой, но в то же время и прочной. При полете модель испытывает большую нагрузку от сопротивления воздуха и, если не будет прочной, может поломаться в воздухе.

Парящая модель самолета с механическим двигателем. Модели самолетов с механическими двигателями строятся двух типов и назначений. Во-первых, парящие модели, использующие при полете ограниченное количество горючего и могущие за короткое время работы двигателя (20 сек., не более, как принято на состязаниях) взлетать на большую высоту—100—150 м, а затем с остановившимся двигателем полого планировать или, если имеются термические потоки воздуха, парить минутами и часами, улетая на десятки километров от старта.

Во-вторых, модели, рассчитываемые на длительный полет, так называемые рейсовые, использующие во время своего полета работу бензинового или компрессорного мотора с большим запасом горючей смеси.

Фюзеляжные модели самолетов с механическим двигателем в отличие от моделей с резиновым мотором имеют большие размеры. Например, размеры моделей с мотором до 5 см3 будут: для парящей модели — размах крыла — 1 600—1 800 мм, длина модели— 1100—1200 мм, вес (полетный)-— 600—700 г; для рейсовой модели: размах крыла — 2 500—3 000 мм, длина модели — 1 250—1 500 мм, вес без горючего — 900 — 1 100 г.

Нагрузка на несущую площадь ограничена и должна быть для обоих типов моделей не менее 12 г/дц2 и не более 50 г/дц2.

Юным авиамоделистам мы предлагаем строить модели парящего типа. Выбор основных размеров такой модели показан на схеме (рис. 7).

Парящая модель самолета с механическим двигателем, так же как и резиномоторная, имеет свои особенности в регулировании и запуске. Основная трудность в создании моделей этого типа — это обеспечить модели устойчивость во время моторного . полета, происходящего под большим углом к горизонту, и последующий переход на планирование.

Руководителю кружка необходимо учитывать и разъяснять учащимся, что моторный полет происходит на максимальных оборотах мотора и тяга винта иногда превышает вес модели.

В настоящее время есть модели такого типа, которые набирают высоту более 200 м под углом в 70—80° к горизонту. В данном случае.вес модели поддерживается в воздухе не подъемной силой, создаваемой крылом, а тягой винта. При этом поступательная скорость в момент набора высоты бывает зачастую меньше, чем при планирующем полете. Кроме того, иногда во время резкой остановки мотора модель почти останавливается в воздухе. Такая модель будет набирать скорость, необходимую для планирующего полета,   не  с  режима пикирования, а с режима парашютирования. Для того чтобы модель перешла на угол планирования с минимальной потерей высоты, необходимо ее крыло устанавливать высоко над центром тяжести.

Высокое расположение крыла на модели осуществляется с помощью специально изготовленного высокого пилона (широкой профилированной стойки).

Воздушный винт для этрго типа летающей модели желательно изготовлять специально, с малым относительным шагом — h = = 0,5—0,6.

Изготовлять парящую модель с механическим двигателем следует очень аккуратно. Профиль крыла нужно брать вогнуто-выпуклый, средней толщины, примерно около 12% от длины хорды крыла (рис. 8). Для стабилизатора профиль берется плоско-выпуклый толщиной 8—10% от длины хорды стабилизатора. Крыло и стабилизатор делаются прямоугольной формы с плавными закруглениями на концах. V крыла — тройное. В центре угол V равен 5—6°, а посередине полуразмаха— 18—20°. Мотор желательно капотировать.

Ограничить работу мотора можно двумя способами: заполнив небольшой бачок определенным количеством горючего или установив часовой механизм, который перекрывал бы доступ в мотор горючего или воздуха. На состязаниях время работы мотора ограничено в пределах от 10 до 20 сек.

Скоростные модели, летающие по кругу. Среди большого количества классов и типов летающих моделей за последние годы в нашей стране широко развился новый и интересный вид модели — модели, летающей по кругу. Такая модель управляется в полете при помощи шнура-корда и называется кордовой (рис. 9).

Управлять полетом летающей модели стремятся многие авиамоделисты. Кордовая модель позволяет до некоторой степени осуществить это желание.

Кордовые летающие модели представляют большой спортивный интерес, так как позволяют проводить соревнования как по скорости, так и по технике выполнения фигур высшего пилотажа: петли Нестерова — прямой и обратной, полета на спине и других сложных фигур.

Кордовые летающие модели делятся на две группы: скоростные и пилотажные (рис. 9)...

Модели этих двух групп очень сильно различаются друг от друга по внешнему виду и аэродинамическим характеристикам.

Если кружковцы изъявят желание строить такую модель самолета, то руководитель должен обратить их внимание при выборе формы и размеров на качество изготовления обтекателей, на необходимость изучения режима работы мотора, а значит, его налаживание, подбор горючей смеси с целью увеличения мощности мотора.

Чтобы уменьшить лобовое сопротивление модели и улучшить обтекаемость ее воздухом, модели придают плавные закругленные формы: предельно уменьшают площадь ми-делевого сечения фюзеляжа и делают его веретенообразной формы; площадь крыла и оперения сокращают настолько, чтобы нагрузка не превышала 200 г/дц2 (установленная норма). Для этого же профиль крыла скоростной модели делают двояковыпуклым, несимметричным, или плосковыпуклым; профиль стабилизатора — симметричным (рис. 10). Детали крепления скрывают внутри крыла и оперения. Поверхность всей модели тщательно отделывают: лакируют или полируют.

Чтобы придать модели устойчивость, необходимо правильно уравновесить, расположить центр тяжести. Центр тяжести такой модели может быть расположен на 20% хорды крыла.. Передняя центровка (даже на передней кромке крыла с более мощным двигателем) облегчает управление моделью на больших скоростях и улучшает ее устойчивость в полете.

Примерная форма модели и ее размеры показаны на схеме (рис. 9). Причем для стандартного мотора К-16, выпускаемого заводом ЦК ДОСААФа, размах крыла следует брать не более 800 мм.

Запуск кордовой модели можно проводить на любой площади, достаточной для взлета.

Основное требование, предъявляемое к пилотажной модели самолета, летающей по кругу на корде, — легкая управляемость в полете, которая  достигается эффективно работающим рулем высоты при хорошей и самостоятельной устойчивости модели как в горизонтальном, так и в фигурном полете. Размеры модели зависят от одного главного — размаха крыла. Размах крыла для этой модели можно брать около одного метра.

Перевернутый полет пилотажной модели оказался возможным благодаря применению на крыле толстого симметричного профиля 16% (рис. 11). Такой профиль дает возможность крылу создать достаточную подъемную силу на малых скоростях полета как в нормальном положении, так и в перевернутом виде и, что самое главное, уменьшить радиус троектории при выполнении прямой и обратной петли.

Крыло пилотажной модели оснащается закрылком по всему размаху крыла, отклоняющимся вверх и вниз на одинаковый угол с рулем высоты. Система отклонения закрылков тесно связана с системой рычагов руля высоты (рис. 9). Такое устройство при угле атаки, равном нулю, и моторе, находящемся в несмещенном состоянии, обеспечивает модели необходимую устойчивость и управляемость.

Чтобы предотвратить возможность крена и виража модели, внутрь круга в конце крыла кладут свинец.

Для хорошей маневренности и управляемости модели в полете, а также сохранения устойчивости стабилизатор пилотажной модели делается больше, чем у скоростной, и устанавливается очень близко от крыла — на расстоянии, равном полутора хордам крыла или немного меньше.

Площадь руля высоты должна составлять 5% от площади крыла.

По своему весу модель делается очень легкой, причем нагрузка на несущую площадь не должна превышать 20 г/дц2.

После того как кружковцы познакомятся с основами проектирования летающей модели того или иного типа, они должны научиться делать эскизы будущей модели. Обсудив и утвердив эскиз на кружке, можно переходить к конструированию модели.

    

 «Техническое творчество»             Следующая страница >>>

 

Другие книги раздела «Книги для учителя»:   "Своими руками"   "История науки и техники"

Смотрите также: Столярные работы   Обработка металла  «Красота своими руками»