СЕВЕРНОЕ ПОЛЯРНОЕ СИЯНИЕ

 

 

Солнечная активность и пятна на Солнце. Изменение числа солнечных пятен в течение 11-летнего цикла солнечной активности

 

Рассмотрим подробнее протуберанцы. Они выходят за пределы хромосферы и проникают далеко в корону. Это светящиеся облака паров. Свет их представляет собой линии излучения водорода, гелия и ионизованного кальция. Температура протуберанцев колеблется в пределах 10 000-20 000 К.

 

Солнечная активность.  Для солнечно-земной физики фундаментальным вопросом является активность Солнца. Именно она определяет степень возмущенности магнитосферы, частоту бурь, их интенсивность и, естественно, закономерности появления полярных сияний.

 

Основные области, с которыми связывают проблему солнечной активности,— это солнечные пятна. Но даже тогда, когда пятна на поверхности Солнца не видны, эта поверхность имеет топкую структуру. Ее сравнивали с «рисовыми зернами» или «листьями ивы» и т. п. Неоднородность солнечной поверхности обозначается термином «грануляция». Поверхностная яркость гранулы может на 10% превышать яркость окружающего фона. Гранулы возникают и исчезают непрерывно, чем-то напоминая кипение.

 

Между гранулами иногда образуются поры (темные области). Из нескольких объединенных друг с другом пор образуются солнечные пятна, которые чаще всего появляются парами в виде ведущего (головного) и замыкающего (хвостового) пятен. Головное пятно является западным, поскольку Солнце вращается вокруг своей оси с востока на запад.

 

Вначале после возникновения размер пятен увеличивается и два головных пятна быстро расходятся по долготе и спустя десять дней отстоят друг от друга на расстоянии 10—15°. Первым распадается хвостовое пятно, тогда как головное живет в четыре раза дольше. Время жизни пятен весьма различно — от нескольких часов до нескольких месяцев.

 

Солнечное пятно состоит из ядра (тени) и окружающей ядро полутени. Ядро занимает около 1/5 всей площади пятна. Относительное число солнечных пятен R  принято как мера солнечной активности. Подсчет ведется по формуле

R  = k (10g  + f ),

где g  — число возмущенных областей (в которое входит число групп пятен, а также отдельные изолированные пятна), f  — общее число пятен независимо от того, находятся ли они в группах или нет. Постоянная k  определяется инструментом наблюдения. Применительно к цюрихскому телескопу с отверстием 8 см и увеличением 64 величина k = l . Эта методика принята в Цюрихской обсерватории, в которую поступают и данные многих обсерваторий мира.

 

Методика расчета, принятая на Гринвичской обсерватории, основана на измерении полной площади солнечных пятен по фотографиям. Сопоставление обеих характеристик показывает, что они изменяются со временем достаточно синхронно. На основании анализа солнечных данных начиная с 1749 г. было показано, что средний период между двумя последовательными максимумами солнечной активности составляет 11,1 года.

 

 

 При этом отдельные периоды имели продолжительность 7, а некоторые 17 лет. Максимумы солнечной активности также отличаются один от другого. Так, в максимумы 1870 и 1974 гг. солнечных пятен было в три раза больше, чем в 1816 г. — в период самого низкого максимума. В 1957—1958 гг. максимум солнечной активности был еще больше ().

 

Представляет научный и практический интерес распределение солнечных пятен по широте. Установлено, что с изменением числа солнечных пятен в течение 11-летнего цикла солнечной активности постепенно изменяется и средняя широта, на которой появляются пятна ( 2). Видно, что в начале каждого цикла, когда число появляющихся пятен растет от минимума к максимуму, новые солнечные пятна расположены в поясе широт ±30°. Затем они возникают все ближе к солнечному экватору и в период максимума их средняя широта составляет ±16°, а при следующем максимуме даже ±8°. Вблизи минимума солнечной активности пятна старого и нового циклов наблюдаются одновременно: первого — на низких широтах, второго — в высоких. Это закон Шперера.

 

Долгоживущие пятна могут наблюдаться несколько раз, т. е. в течение нескольких периодов вращения Солнца. Пятно вблизи экватора возвращается к своей исходной точке в среднем через 25,0 дня, а на широте ±30° — через 26,2 дня. Это сидерический (истинный) период вращения. Но поскольку Земля должна «догонять» Солнце (Солнце вращается в том же направлении, в каком Земля обращается вокруг него), то для наблюдателя, находящегося на Земле, это время удлиняется. Оно равно 26,9 дня, если пятно находится на солнечном экваторе, и 28,3 дня — на широте ±30°. Это синодические периоды вращения. Период вращения изменяется с широтой по той причине, что Солнце — газообразное тело.

 

Как правило, группа солнечных пятен окружена факельными полями. В этих областях фотосфера несколько ярче, чем в остальных местах, видных в белом свете. Факелы состоят из ярких полосок, прожилок и неправильных лоскутков. В таких факельных полях появляются и активные протуберанцы, которые связаны с солнечными пятнами, а также вспышки и возбуждаемые области в короне. Факелы возникают незадолго до образования солнечного пятна и продолжают существовать и после исчезновения пятна. Время их жизни в три раза больше времени жизни пятна. Считается, что факелы — это те области, где турбулентность и конвекция поднимают нагретые газы более глубоких уровней вверх.

 

На шпротах выше ±40° солнечные пятна встречаются исключительно редко. Однако факелы наблюдаются даже на широтах 60—80°. Правда эти факелы несколько иного вида. Они малы, имеют вид ярких крапинок диаметром 5000—10 000 км, время их жизни непродолжительно. Эти факелы (полярные) чаще всего встречаются в периоды, близкие к минимуму солнечной активности.

 

Важной характеристикой солнечного пятна является его магнитное поле. Его наличие было подтверждено путем измерения эффекта Зеемана, по которому одиночные спектральные линии многих элементов расщепляются на две или более линии, когда излучаются в магнитном поле. Измерение эффекта Зеемана позволяет по расстоянию между компонентами определить величину напряженности поля. Кроме того, изменение магнитного поля на обратное меняет поляризацию излучаемой волны. Поэтому с помощью спектрографа можно различать северную и южную полярность магнитного поля. Величина магнитного поля в большом солнечном пятне составляет около 3000 Гс.

 

Для большинства больших солнечных пятен характерно биполярное магнитное поле, т. е. когда одно пятно пары имеет северную полярность, а другое — южную. Как правило, головное пятно в северном полушарии Солнца южной полярности, а хвостовое — северной. В южном полушарии — наоборот. В следующем солнечном цикле все обращается. Поэтому если требовать от всех основных параметров повторения из цикла в цикл, то следовало бы принять цикл равным не 11 лет, а 22 года; повторение направления магнитного поля солнечных пятен происходит только через 22 года.

 

Эффективная температура солнечного пятна составляет около 4500 К, тогда как соседняя фотосфера имеет 6000 К. Таким образом, в области солнечного пятна работает какой-то физический механизм, способный поддерживать на большой площади такой перепад температуры (более чем на 1000 К).

 

Глубина солнечного пятна порядка 10 000 км. В центре пятна конвективные потоки гораздо сильнее, поэтому газы растекаются радиально через вершину «кратера» солнечного пятна. Скорость этого растекания составляет порядка 2 км/с. Непосредственным следствием этого эффекта является охлаждение пятна. Вещество, поднимаемое вверх против силы тяготения, увеличивает свою потенциальную энергию, и этот прирост берется из запаса тепловой энергии.

 

 

К содержанию книги: Ю.Г. Мизун: "Полярные сияния"

 

Смотрите также:

 

Полярное сияние  полярные сияния и радиационные пояса.  оптические и электрические явления в атмосфере...  Магнитный полюс Земли

 

 Последние добавления:

 

Конституция. Право. суд   насекомые   История человеческого тела   Солнечный пруд  Крымское землетрясение 1927   Правоприменение