ИЗВЕСТЬ. Негашеная известь комовая. Производство комовой негашеной извести

  

Вся электронная библиотека >>>

Содержание книги >>>

 

Для студентов обучающихся по специальности «Производство строительных изделий и конструкций»

Минеральные вяжущие вещества


Раздел: Быт. Хозяйство. Строительство. Техника

 

ГЛАВА 2. ИЗВЕСТЬ СТРОИТЕЛЬНАЯ ВОЗДУШНОГО ТВЕРДЕНИЯ

Негашеная известь (комовая)

 

 

Производство комовой негашеной извести состоит из следующих основных операций: добычи и подготовки известняка, подготовки    топлива и обжига   известняка.

Известняки добывают обычно открытым способом в карьерах. Плотные известково-магнезиальные породы взрывают. Для этого вначале с помощью станков ударно-вращательного (при твердых породах) или вращательного бурения (при породах средней прочности) бурят скважины диаметром 105—150 мм глубиной 5—8 м и более на расстоянии 3,5—4,5 м одна от другой. В них закладывают надлежащее количество взрывчатого вещества (игданита, аммонита) в зависимости от прочности породы, мощности пласта и требуемых габаритов камня.

Наблюдающаяся иногда неоднородность залегания известняков в месторождениях (по химическому составу, прочности, плотности и т. п.) обусловливает необходимость выборочной разработки полезной породы. Выборочная добыча известняка повышает стоимость продукта, поэтому при определении технической и экономической целесообразности разработки тех или иных месторождений необходимы тщательные геологоразведочные изыскания.

Полученную массу известняка в виде крупных и мелких кусков погружают в транспортные средства обычно одноковшовым экскаватором. В зависимости от расстояния между карьером и заводом известняк доставляют на завод ленточными конвейерами, автосамосвалами, железнодорожным и водным транспортом

Высококачественную известь можно получить только при обжиге карбонатной породы в виде кусков, мало различающихся по размерам. При обжиге материала в кусках разного размера получается неравномерно обожженная известь (мелочь оказывается частично или полностью пережженной, сердцевина крупных кусков — необожженной). Кроме того, при загрузке шахтных печей кусками разного размера значительно увеличивается степень заполнения печи, а следовательно, уменьшается газопроницаемость материала,, что затрудняет обжиг, Поэтому перед обжигом известняк соответствующим образом подготавливают: сортируют по размеру кусков и» если необходимо, более крупные негабаритные куски дробят.

 

 

В шахтных печах наиболее целесообразно обжигать известняк раздельно по фракциям 40—80, 80—120 мм в поперечнике, а во вращающихся печах — 5—20 и 120— 40 мм.

Так как размеры глыб добытой горной породы нередко достигают 500—800 мм и более, то возникает необходимость дробления их и сортировки всей полученной после дробления массы на нужные фракции. Это осуществляется на дробильно-сортировочных установках, работающих по открытому или замкнутому циклу с использованием щековых, конусных и другого типа дробилок. Дробить и сортировать известняк целесообразно непосредственно на карьере и доставлять на завод лишь рабочие фракции.

Обжиг — основная технологическая операция в производстве воздушной извести. При этом протекает ряд сложных физико-химических процессов, определяющих качество продукта. Цель обжига — возможно более полное разложение (диссоциация) СаС03 и MgC03-CaC03 на CaO, MgO и С02 и получение высококачественного продукта с оптимальной микроструктурой частичек и их пор.

Если в сырье есть глинистые и песчаные примеси, то во время обжига между ними и карбонатами происходят реакции с образованием силикатов, алюминатов и ферритов кальция и магния.

Реакция разложения (декарбонизация) основного компонента известняка — углекислого кальция идет по схеме: CaC03^Ca04-C02. Теоретически на декарбонизацию 1 моля СаС03 (100 г) расходуется 179 кДж или 1790 кДж на 1 кг СаС03. В пересчете на 1 кг получаемого при этом СаО затраты равны 3190 кДж.

Процесс диссоциации углекислого кальция — обратимая реакция. Ее направление зависит от температуры и парциального давления углекислого газа С02 в среде с диссоциирующимся карбонатом кальция.

Так как СаО и СаС03 являются твердыми веществами и их концентрации в единице объема постоянны, константа диссоциации /(ДИс = Ссо2. Для газа его концентрацию можно выражать через парциальное давление, тогда /<дис = -Рсо2. Следовательно, динамическое равновесие в рассматриваемой системе устанавливается при определенном и постоянном для каждой данной температуры давлении Рсо2 и не зависит ни от количества карбоната кальция, ни от количества оксида кальция, находящихся в системе. Это равновесное давление Рсо2 называется давлением диссоциации или упругостью диссоциации.

Диссоциация углекислого кальция возможна лишь при условии, если давление диссоциации будет больше парциального давления С02 в окружающей среде. При обычной температуре разложение СаС03 невозможно, поскольку давление диссоциации ничтожно. Установлено, что лишь при 600 °С в среде, лишенной углекислого газа (в вакууме), начинается диссоциация углекислого кальция, причем она протекает очень медленно. При дальнейшем повышении температуры диссоциация СаСОз ускоряется ( 7).

При 880 °С давление (упругость) диссоциации достигает 0,1 МПа. При этой температуре (ее иногда называют температурой разложения) давление двуоксида углерода при диссоциации превосходит- внешнее атмосферное давление, поэтому разложение карбоната кальция в открытом сосуде протекает интенсивно. Это явление условно можно сравнить с интенсивным выделением пара из кипящей жидкости.

При температуре больше 900 °С повышение ее на каждые 100°С ускоряет декарбонизацию известняка примерно в 30 раз. Практически в печах декарбонизация начинается при температуре на поверхности кусков около 850 °С при содержании С02 в отходящих газах около 40—45 %• Скорость декарбонизации известняка при обжиге зависит также от размеров обжигаемых кусков и их физических свойств.

Разложение СаС03 происходит не сразу во всей массе куска, а начинается с его поверхности и постепенно проникает к внутренним его частям. Скорость передвижения зоны диссоциации внутрь куска увеличивается с повышением температуры обжига ( 8). В частности, при 800 °С скорость перемещения зоны диссоциации составляет примерно 12 мм, а при 1100°С — 14 мм в 1 ч, т. е. идет в 7 раз быстрее, чем при 800 °С.

Качество строительной воздушной извести зависит не только от содержания в ней свободных оксидов кальция и магния, но и от микроструктуры продукта, определяемой величиной и формой кристаллов СаО и MgO, a также величиной пор и распределением их в массе вещества.

При истинной плотности кальцита, основного компонента известняка, 2,72 г/см3 1 г вещества занимает абсолютный объем 1 :2,27 = 0,36 смг\ Из 1 г кальцита при обжиге образуется 0,56 г оксида кальция, который при плотности 3,4 г/см3 занимает объем 0,56:3,4 = 0,16 см3, т. е. в 2,25 раза меньше, чем исходный кальцит. Если предположить при этом, что оксид кальция равномерно распределится в объеме исходного кальцита и займет половину этого объема, то другая половина будет представлена порами различного размера, пронизывающими массу извести.

В действительности средняя плотность известняков различных месторождений в зависимости от их химического и петрографического состава, плотности, микроструктуры, а также условий обжига изменяется по-разному. Обычно при низких температурах обжига (850— 900°С) куски извести из известняков различных месторождений лишь немного уменьшаются в объеме, хотя наблюдается иногда некоторое его увеличение. При повышении температуры обжига до 1000 и особенно до 1200—1300 °С объем обычно значительно уменьшается. Исключения наблюдаются редко.

Естественно, что уменьшение объема сопровождается уменьшением общей пористости кусков и увеличением их средней плотности. Если средняя плотность извести, полученной обжигом при 850—900 °С, достигает 1,4— 1,6 г/см3, то для извести, обожженной при 1100—1200°С, она повышается до 1,5—2,5 г/см3 и более (в куске). Характерно при этом, что плотность чистого оксида кальция, по данным Б. Н. Виноградова, практически не зависит от температуры обжига в пределах 650—1500 °С и равна 3,43 г/см3. При обжиге идет быстрая перестройка тригональной кристаллической решетки кальцита в кубический оксид кальция.

Декарбонизация известняков при низких температурах (800—850 °С) приводит к образованию оксида кальция в виде массы губчатой структуры, сложенной из кристаллитов размером около 0,2—0,3 мкм и пронизанной тончайшими капиллярами диаметром около 8-10~3 мкм.

Удельная поверхность такой извести, по исследованиям Р. Гауля и Ф. Рааля, достигающая порядка 50 м2Д, должна бы предопределять высокую реакционную способность продукта при взаимодействии с водой. Однако этого не наблюдается, по-видимому, потому, что проникновение воды через узкие поры в массу оксида кальция затруднено. Влияние формы кристаллитов оксида кальция на технические свойства извести до сих пор не изучено.

Повышение температуры обжига до 900° и особенно до 1000°С обусловливает рост кристаллов оксида кальция до 0,5—2 мкм и значительное уменьшение удельной поверхности — до 4—5 м2/г, что должно бы отрицательно отражаться на реакционной способности продукта. Но одновременное возникновение крупных пор в массе материала создает предпосылки к быстрому прониканию в него воды и энергичному их взаимодействию. Наиболее энергичным взаимодействием характеризуется известь, полученная обжигом известняка при температурах около 900 °С. Обжиг при более высоких температурах приводит к дальнейшему росту кристаллов оксида кальция (до 3, 5—10 мкм), уменьшению удельной поверхности, усадке материала и понижению скорости взаимодействия его с водой.

Наконец, обжиг при 1400°С и выше вызывает увеличение средней плотности, резкое уменьшение пористости и образование кристаллов оксида кальция и их конгломератов значительных размеров—10—20 мкм и больше ( 9), что предопределяет замедленное их взаимодействие с водой, характерное   для пережженной извести.

Некоторые примеси в известняках, особенно железистые, способствуют быстрому росту кристаллов оксида кальция и образованию «пережога» и при температурах около 1300 °С. Это вызывает необходимость обжигать сырье с такими примесями при более низких температурах.

Пережог в извести вредно сказывается на качестве изготовляемых на ней растворов и изделий. Запоздалое гашение такой извести, протекающее обычно в уже схватившемся растворе или бетоне, вызывает механические напряжения и в ряде случаев разрушение материала. Поэтому наилучшей будет известь, обожженная при минимальной температуре, обеспечивающей полное разложение углекислого кальция и экономию топлива.

Выбор температуры обжига известняка зависит и от наличия в нем примесей углекислого магния. В отличие от углекислого кальция MgC03 при нагревании разлагается при более низкой температуре: начало около 400 °С и полная диссоциация при 600—650 °С. Реакционная же способность образующегося при этом MgO, как и СаО, с повышением   температуры   обжига значительно уменьшается. Уже при 1200—1300°С получается намертво обожженный оксид магния — периклаз, который практически вяжущими свойствами не обладает и только при очень тонком измельчении начинает медленно взаимодействовать с водой. Достаточно активный оксид магния получается при обжиге доломитов и доломитизированных известняков при 850—950 °С.

Так как известняк обжигают при более высокой температуре, чем это необходимо для разложения углекислого магния, известь со значительным содержанием в ней оксида магния гасится медленно. Поэтому обжигать карбонатные породы с повышенным содержанием углекислого магния следует при температурах не выше 900— 1000°С. В противном случае не будут использованы вяжущие свойства оксида магния, полученная же известь может характеризоваться неравномерным изменением объема.

Во время обжига известняков с глинистыми и песчаными примесями протекают реакции в твердом состоянии между СаСОз, MgC03, CaO и MgO и кислыми оксидами Si02j A1203 и Fe203, содержащимися в этих примесях. При высоких температурах (800—1200 °С и более) значительно увеличивается подвижность анионов и катионов, образующих решетку кристаллов этих веществ. В результате происходит интенсивный обмен элементами кристаллической решетки и образование силикатов, алюминатов и ферритов кальция. Поэтому в состав продуктов обжига известняка, кроме преобладающего количества свободного оксида кальция, обычно входят двухкаль-циевый силикат (3-2CaO-Si02, однокальциевый алюминат СаО-А1203 и двухкальциевый феррит 2СаО« •Fe203.

Скорость реакции между СаО и кислыми оксидами возрастает с повышением температуры. Чем больше в известняке глинистых и песчаных примесей, тем больше оксида кальция связывается в указанные соединения, тем медленнее гасится известь и тем сильнее выражены ее гидравлические свойства. По ГОСТ 9179—77 в хорошо обожженной извести содержание свободных оксидов кальция и магния должно быть не менее 90%. На современных заводах при чистых видах сырья получают известь активностью до 95 % и более.

Для практических целей важны такие показатели, как выход извести из единицы массы обжигаемого материала, его расход на единицу массы получаемой извести, а также теоретически возможная и практически получаемая активность извести при обжиге того или иного вида сырья. Все эти показатели с достаточной для практики точностью определяются по формулам А. В. Волженского, учитывающим химический состав обжигаемого материала.

При степени декарбонизации, равной единице, можно установить теоретический выход извести из сырья данного химического состава. На современных заводах и установках в настоящее время даже при получении мягкообожженной извести степень декарбонизации достигает 0,95—0,98.

Следует отметить, что при обжиге извести в пересыпных печах она обогащается золой топлива в количестве, составляющем примерно около 1 % массы сырья. Это обстоятельство не учитывается в приведенных формулах, так как оно мало влияет на конечные значения.

 

К содержанию книги: "Минеральные вяжущие вещества"

 

Смотрите также:

 

ВЯЖУЩИЕ. КЛАССИФИКАЦИЯ ВЯЖУЩИХ ВЕЩЕСТВ

ВОЗДУШНЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА

ГИДРАВЛИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

 

Вяжущие материалы и заполнители

Глина   Известь   Цементы   Гипс   Заполнители

 

Строительные материалы для строительства дома

Вяжущие материалы

Черные вяжущие материалы

 

ИСКУССТВЕННЫЕ КАМЕННЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ НА ОСНОВЕ  НЕОРГАНИЧЕСКИХ МИНЕРАЛЬНЫХ ВЯЖУЩИХ

ИЗДЕЛИЯ НА ОСНОВЕ ИЗВЕСТИ

МАТЕРИАЛЫ И ИЗДЕЛИЯ НА МАГНЕЗИАЛЬНЫХ ВЯЖУЩИХ

 

НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

 

Минеральные вяжущие вещества

Искусственные каменные материалы на основе минеральных вяжущих веществ

 Битумные и вяжущие вещества

 

Исходные материалы

Минеральные вяжущие вещества

 

Бетоны

КОМПОНЕНТЫ БЕТОНА И ТРЕБОВАНИЯ К НИМ (ВЯЖУЩИЕ ВЕЩЕСТВА, ЗАПОЛНИТЕЛИ, ДОБАВКИ И ПР.)

ПОРТЛАНДЦЕМЕНТ И ШЛАКОПОРТЛАНДЦЕМЕНТ (ГОСТ 10178)

Быстротвердеющий портландцемент

Сверхбыстротвердеющие цементы (СБТЦ). ВНВ

ГИДРО-SI

Расширяющиеся цементы (РЦ)

Напрягающийся цемент

Портландцемент с пластифицирующими и гидрофобизирующими добавками

Тонкомолотый многокомпонентный цемент (ТМЦ)

ЭМАКО МАКФЛОУ

ГЛИНОЗЕМИСТЫЕ И ВЫСОКОГЛИНОЗЕМИСТЫЕ ЦЕМЕНТЫ (ГОСТ 969)

БЕЛЫЕ ПОРТЛАНДЦЕМЕНТЫ (ГОСТ 965)

Супербелый датский портландцемент

Цветной портландцемент (ГОСТ 15825)

СУЛЬФАТОСТОЙКИЕ ЦЕМЕНТЫ (ГОСТ 22266)

Суперсульфатостойкие цементы

Сульфатостойкий портландцемент с минеральными добавками ССПЦ 400 Д20

ТАМПОНАЖНЫЕ ПОРТЛАНДЦЕМЕНТЫ (ГОСТ 1581)

ЦЕМЕНТ ДЛЯ СТРОИТЕЛЬНЫХ РАСТВОРОВ (ГОСТ 25328)

Кислотоупорный кварцевый кремнефтористый цемент

ЗАПОЛНИТЕЛИ ДЛЯ БЕТОНА

Добавки в бетонные смеси

Минеральные порошки-заменители цемента (активные минеральные добавки и наполнители)

Суперпластификаторы

Методы выдерживания бетона на морозе

Биоциды

Комплексные добавки

Добавки в бетонные смеси. Добавки пластифицирующего действия

Регулирующие схватывание бетонных смесей и твердение бетонов

Регулирующие пористость бетонной смеси и бетона

Придающие бетону специальные свойства

Полифункционального действия

Комплексные добавки-модификаторы

Армирующая фибра

Добавки для бетона